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Abstract 

 

Humans and animals perceive the surrounding environment using the 

physiological mechanisms of perception, commonly called senses (GUERRINI et 

al., 2017). Bio-inspired by the biological olfactory system, the development of 

artificial devices that combine chemical sensors array with pattern recognition 

techniques, commonly termed as “electronic nose” (E‐Nose), have been used for 

recognition of Volatile Organic Compounds (VOCs). The gas sensors' response may 

contain some disturbances (noise and drift) composed of multiple frequencies, 

affecting signal processing tasks' performance. The present thesis focused on 

analyzing the drift behavior in signals from gas sensors used in artificial olfactory 

devices. For this purpose, one extensive database was used, reported in the 

literature as a real database with severe drift issues. An exploratory analysis was 

performed over that database using discrete Wavelet transform, observing the 

presence of drift, noise perturbance, and the existence of outliers, making it more 

challenging to treat that database. Additionally, it was estimated the influence of 

drifts based on Sample Entropy to establish the dynamics caused in the signals of 

E-Nose. Finally, it was generated several work scenarios using synthetic 

measurements generator. I was sought to explore the effect of drifts on different 

portions of signals from electronic nose systems, analyzing the performance of the 

rapid detection method for electronic nose systems using artificial data. 

Keywords: electronic nose, gas sensor drift, rapid detection, signal 

processing, sample entropy, wavelet 

  



Resumo 

 

Humanos e animais percebem o ambiente circundante usando os 

mecanismos fisiológicos de percepção, comumente chamados de sentidos 

(GUERRINI et al., 2017). Bioinspirados pelo sistema olfativo biológico, o 

desenvolvimento de dispositivos artificiais que combinam uma matriz de sensores 

químicos com técnicas de reconhecimento de padrões, comumente denominados 

como “nariz eletrônico” (E ‐ Nose), têm sido usados para o reconhecimento de 

Compostos Orgânicos Voláteis (COVs). A resposta dos sensores de gás pode conter 

algumas perturbações (ruído e deriva) compostas por múltiplas frequências, 

afetando o desempenho das tarefas de processamento de sinal. A presente tese teve 

como objetivo analisar o comportamento da deriva em sinais de sensores de gás 

usados em dispositivos olfativos artificiais. Para tanto, foi utilizado um extenso 

banco de dados, relatado na literatura como um banco de dados real com graves 

problemas de deriva. Uma análise exploratória foi realizada sobre esse banco de 

dados usando transformada Wavelet discreta, observando a presença de deriva, 

perturbação de ruído e a existência de outliers, tornando mais difícil o tratamento 

desse banco de dados. Adicionalmente, estimou-se a influência dos desvios com 

base na Entropia da Amostra para estabelecer a dinâmica causada nos sinais do 

E-Nose. Por fim, foram gerados diversos cenários de trabalho utilizando gerador 

de medidas sintéticas. Fui procurado para explorar o efeito dos desvios em 

diferentes partes dos sinais de sistemas de nariz eletrônico, analisando o 

desempenho do método de detecção rápida para sistemas de nariz eletrônico 

usando dados artificiais. 

Palavras-chave: nariz eletrônico, deriva do sensor de gás, detecção rápida, proces-

samento de sinal, entropia de amostra, wavelet 
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1 INTRODUCTION 

 

During the 1980s, research on artificial olfactory systems leads to a 

generally accepted definition of an electronic nose as an instrument that comprises 

an array of heterogeneous electrochemical gas sensors with partial specificity and 

a pattern recognition system. However, in more recent years, the term electronic 

nose has been used in a broader sense to refer to gas sensors that measure the 

ambient gas atmosphere based on the general principle that changes in the 

gaseous atmosphere characteristically alter the sensor properties. It exists 

different sensor types for olfactory systems, and the more commonly used are 

fabricated with the following materials: metal oxides, conducting polymers 

composites, and intrinsically conducting polymers. Apart from conductive sensors, 

gas detection has also been done using optical sensors, surface acoustic wave 

sensors, gas-sensitive field-effect transistors, and quartz microbalance (QMB) 

sensors (LOUTFI et al., 2015). 

Electronic noses use various chemical sensors (arranged as sensors array) 

with overlapping sensitivities that detect different aromas, meaning that they are 

not selective to a given chemical compound. However, they are slightly more 

sensitive to individual chemical families such as organic solvents, fatty acids, 

sulfurous gases, among others. In this way, the sensors' response consists of 

characteristic signals for each chemical mixture, being sensitive to a wide variety 

of products. Once the data from the individual sensors from the array is collected, 

the E-Nose devices require a suitable signal processing stage to analyze and 

classify the aroma data. However, so far, the signal pre-processing of sensor array 

responses represents an essential part of most artificial olfactory applications, 

affecting the final response (forecasting) (LOUTFI et al., 2015). 

Electronic nose systems are useful in multiple applications, such as 

detecting toxic gas escapes, pollution factors, bombs, narcotics, diagnosis of 
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diseases, and food quality control. They have significant advantages in the agri-

food sector, among which the following stand out: 

• Allow Non-destructive analysis of the product. 

• Obtaining real-time results (in seconds or minutes). 

• Generally, they have good portability, robustness, and low price. 

• Allow easy adaptation to different quantities and varieties of products. 

• Ease of use by unqualified personnel. 

 

1.1 Object of study 

A substantial restriction in the technology of the gas sensors, in addition 

to the limitations in selectivity and sensitivity, is presented from the sensor 

drifts(ZIYATDINOV, A. et al., 2010). The drift can degrade the response of the 

system. This effect is even more considerable when the analysis is performed 

through multiple measurements made over long periods. The sensors' responses 

vary by aging in the sensing layer because of more cycles of use, even considering 

measures under controlled conditions. 

The drift effects over the responses affect pattern recognition tasks, 

causing lower accuracy rates (wrong odor discrimination). The drift effects are 

more evident when trying to classify volatile compounds that have been introduced 

to the sensor system in a broad time regarding the training dataset. In this way, it 

is well known that the drifts are a dynamic process caused by chemical changes in 

the sensors, which give an unstable signal over time. Besides, samples and the 

operator through contamination of the instrument can also introduce drifts 

(ARTURSSON et al., 2000). For this reason, this work focuses on analyzing the 

problem of gas sensors drifts and their effect on odor recognition systems from 

experiments based on sample entropy and the use of the rapid detection approach 

proposed by (RODRIGUEZ GAMBOA, Juan C.; ALBARRACIN E., Eva Susana; 

SILVA, Adenilton J. Da; et al., 2019; RODRIGUEZ GAMBOA, Juan C et al., 2021). 
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1.2 Objectives 

1.2.1 General Objective 

Analyze the drift behavior in signals from electronic nose systems based on 

sample entropy and the rapid detection approach. 

1.2.2 Specific objectives 

• Estimate the effect of drifts based on the dynamic principles of entropy to 

establish the dynamics caused in the signals of electronic nose systems. 

• Explore the effect of drifts on different portions of signals from electronic nose 

systems, using synthetically generated data. 

• Analyze the performance of the rapid detection method for electronic nose 

systems using artificial data.  
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2 THEORETICAL FRAMEWORK AND STATE OF THE ART 

 

This chapter's subject begins by describing the operation and the parts that 

constitute this class of systems to present a general perspective of the detection 

and recognition systems of volatile compounds. Below, the content focuses on gas 

sensors, their workflow, and how they detect volatiles to sequentially generate the 

electrical signals necessary for odor recognition through the proper use of a data 

acquisition system, the software elements, and the pattern recognition system 

used for this specific task. From there, it delves into the topic to be dealt with in 

this thesis, which corresponds to drifts in chemical sensors and the effects they 

cause on sensor signals. Therefore, in this chapter, the existing state of the art in 

terms of the different ways of approaching the problem of drifts is presented, these 

being the construction of new sensors, the development of robust classifiers, and 

the treatment of drifts in the processing of the signals. 

 

2.1 Electronic noses: general aspects and applications 

"Organisms sense their surroundings in search of food, to secure 

themselves from predator and prey, to design territory, and choosing interesting 

mates via emission and detection of volatile chemical compounds" (JHA et al., 

2019). Bio-inspired by the olfactory system, the development of artificial devices 

that combine arrays of chemical sensors with pattern recognition techniques, 

commonly termed “electronic nose” (E‐nose), have been explored for recognition 

and sensing of volatile organic compounds (VOCs). Its use as inexpensive chemical 

detectors is an emerging research area that plays a critical function by mimicking 

the olfactory organ. This mimic can recognize different smells that correlate with 

a range of fields, including environmental monitoring, disease diagnosis, public 

security affairs, agricultural production, food industry, and biometric applications, 

among others (HU et al., 2018; JHA et al., 2019). Intending to contextualize 
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artificial olfaction, this chapter introduces VOCs recognition sensing by chemical 

sensors using E-Nose systems and its significance for VOCs recognition and 

sensing in different applications. 

 

2.2 A brief history of the E-Nose systems 

The term electronic nose as “instrument, which comprises an array of 

electronic chemical sensors with partial specificity and an appropriate pattern-

recognition system, capable of recognizing simple or complex odors” was presented 

by (GARDNER; BARTLETT, 1994). However, as informed in that same article, the 

earliest work on the development of an instrument specifically to detect odors 

probably dates back to (MONCRIEFF, 1961), and the first electronic noses were 

reported by (BUCK, T.M. AND ALLEN, F.G. AND DALTON, 1965; DRAVNIEKS; 

TROTTER, 1965; WILKENS; HARTMAN, 1964). Afterward, another important 

work representing a landmark of the E-Nose was presented by (PERSAUD, 

Krishna; DODD, 1982). They proposed an E‐nose using semiconductor transducers 

and reported that this device could reproducibly discriminate between a wide 

variety of odors without highly specific receptors. It meant an electronic nose 

concept as an intelligent system that comprises an array of chemical sensors for 

odor classification. In that way, the investigations in chemical sensing that 

comprise two main categories: bulk detection and trace vapor detection using 

chemical sensors, have been growing in recent years. From the number of 

published reports based on chemical sensing between 1950 and 2017 (216.521 

papers), the maximum number of these reports were published between 2011 and 

2017 (a total of 74,145 documents). It shows the interest and growth of chemical 

sensing applications in the last decade (JHA et al., 2019). 

The relatively quick assessment of headspace (volume above a liquid or 

solid in a closed container), a quantitative representation or finger-print of gases, 

and cheap sensors easily integrated with the current production processes are 

some of the important features that have done of these systems a relevant topic for 
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research in the chemical detection field. However, despite these features, there are 

still relatively few applications of E-Nose adopted in the industry. It could be 

attributed to difficulties in robustness, selectivity, and reproducibility of the 

sensors and the need for pattern recognition algorithms to cope with the complex 

signal analysis. Nonetheless, the use of electronic noses is rapidly expanding, and 

there have been notable achievements relevant to the food industry, particularly 

in the past few years. Furthermore, this progress coincides with an increased 

understanding of the biological mechanisms behind the human olfactory system. 

Specifically, we now have a greater understanding of the genetics behind the 

olfactory receptors and the relationships between an odorant’s molecular property 

and the quality of an odor (LOUTFI et al., 2015). 

 

2.3 E-Nose system architecture 

 The E-Nose system tries to mimic the working mechanism of the biological 

olfaction system for sensing chemical compounds in different applications. 

Therefore, an E-Nose consists of a set of partially selective chemical sensors (sensor 

array), signal conditioning electronics, a pattern recognition unit equivalent to 

olfactory receptor neurons, olfactory bulb, and olfactory cortex of the biological 

olfaction system, respectively (JHA et al., 2019). How is depicted in Figure 1, E‐

nose systems use interactive sensor‐arrays (acquisition) that react to analytes on 

the sensitive materials' surface, accompanying the adsorption, desorption and/or 

reversible reaction. Meanwhile, the specific responses between the analytes and 

the sensors array are recorded and transformed into readable digital values (data 

processing), which can be computed based on statistical models (comparison) to 

achieve the recognition (decision) of different odors (HU et al., 2018). 

An E-Nose comprises different modules that work together to recognize 

odors. This type of instrument has at least three parts, each one with specific 

functions detailed below: adequacy of the gas mixture (sampling system), the gas 

sensor array, and the processing system. Figure 2 shows the working sequence of 
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an artificial olfaction system, whose blocks are described in the subsequent 

sections. 

Figure 1 – Schematic diagram of the working principle of human and artificial olfaction 

Source: Adapted from (HU et al., 2018) 

 

2.3.1 Adequacy of the gas mixture (sampling system) 

Initially, the sample is conditioned by volatile extraction methods that 

allow the gas to be analyzed to pass to the sensor array. The sampling system is 

mainly composed of a place where the sample is preserved (such as a concentration 

chamber), a control system, and a flow transport system (such as an air pump, 

mass flow controllers, etc.).  

The sample used depends on the applications of the E-Nose. Some of these 

applications summarized by (HU et al., 2018) and (ZHANG, L.; ZHANG, D., 2018) 

are listed below. 

- Medical care: diagnosis of health conditions via the detection and 

classification of VOCs into one or a combination of body fluids. In general, exhaled 

breath, skin/sweat, feces, urine, saliva, breast milk, and intestinal gas are one or 

a combination of the secretion pathways of VOCs emission. 

1.Acquisition
2.Data 

processing
3.Comparison 4.Decision
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- Food industry: The VOCs concentrations in ppm emitted in the food aging, 

the spoilage process makes many commercial sensors usable and a powerful tool 

in the food industry. For instance, E-Nose systems have been used to monitor the 

shelf life of tomato by sensing the aromatic VOCs due to post-harvesting, 

respiration, fermentation, and phenolic oxidation; fungi contamination in peaches 

are detected through the analysis of VOCs; and other application areas for several 

specific foodstuffs: milk, fish and meat, wine, beverage, tea and coffee 

(RODRÍGUEZ; DURÁN; REYES, 2010). Moreover, the brand and/or the place of 

origin can be recognized by E-Nose, e.g., the tobacco types and cigarette brands 

can be identified by a composite polymer-based sensor. 

 

Figure 2 – Block diagram of the E-Nose system. S0, S1, …, SN correspond to each gas sensor 

Source: Adapted from (JHA et al., 2019) 

 

- Environment monitoring: Continuously on-line/in situ detection of gas is 

desired for most environmental monitoring applications, e.g., the identification of 

toxic wastes including carbon monoxide (CO), sulfur dioxide (SO2), ammonia, 

hydrogen sulfide (H2S), ozone (O3); air quality testing is mainly nitric oxide (NO), 

nitrous oxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide 

(SO2). Soil/water pollution mainly includes methane (CH4), ammonia, NO, SO2; the 

factory emission detection is mostly about toluene, H2S, SO2; vehicle exhaust 
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control of CO, CO2, NO, NO2; indoor volatile organic compounds are mainly 

formaldehyde (HCHO), benzene and acetone, etc. 

- Public Security: The public security, especially anti-terrorism, becomes 

extremely urgent. The applications in this field mainly focus on detecting 

explosives and/or nerve agents. Normally, the vapor pressure of explosives, e.g., 2-

methyl-1,3,5-trinitrobenzene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 

octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are 9 ppb, 4.9 ppt, and 0.25 

ppt, respectively. 

- Agricultural Production: The E-Nose system in agriculture is used for 

monitoring production processes, disease detection, identify insect infestations in 

their first stage, and soil/water pollution. 

Traditionally, the E-Nose applications have been performed in highly tight-

controlled sensing test chambers that isolate the chemical analyte (odor) from its 

natural, predominantly complex environmental condition. Such isolation enables 

the chemical sensory system to exhibit chemical signatures that are, to a very large 

extent, specific to both, the kind of sensory elements used and the chemical analyte 

being monitored. Controlled sensing test chambers ensure a strict handle over 

some critical sensing conditions, including environmental temperature, pressure, 

and ambient flow. (VERGARA et al., 2013). On the other hand, applications such 

as the detection of toxic chemicals in human environments, or the localization of 

gas sources by robots, demand a continuous classification of volatile substances 

which cannot be addressed with the traditional pulse-like excitation. In contrast, 

when no control is performed over the environment (including the gas-emitting 

source), signals look much more random and chaotic, being difficult to identify 

distinctive behaviors or patterns (MONROY et al., 2016). 

Figure 3 shows the readings of an E-Nose composed of an array of four 

metal oxide- semiconductor (MOX) gas sensors when exposed to an ethanol gas 

source under controlled and uncontrolled environmental conditions. As can be 

seen, when controlling the environment, reproducible patterns are obtained, and 

key-points can be easily identified in the response: (a) start of the volatile 
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exposition, (b) end of the transient response and start of the steady phase, and (c) 

end of the volatile exposition and start of the recovery period. In contrast, when no 

control is performed over the environment (including the gas-emitting source), 

signals look much more random and chaotic, being difficult to identify distinctive 

behaviors or patterns (MONROY et al., 2016). To facilitate understanding, we will 

continue with the description of an E-Nose system with controlled environmental 

conditions. 

 

Figure 3 – Readings of an E-Nose exposed to an ethanol gas source under (top) well-controlled 

environment and measurement, and (bottom) when no control is performed during the 

measurements 

Source: (MONROY et al., 2016) 

 

2.3.2 Matrix or array of gas sensors 

An odor recognition system has as its main element a matrix of gas sensors 

responsible for transducing the concentration of volatiles in changes in their 
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resistance. Conveniently, said matrix is in a special chamber or compartment in 

which the specific conditions for its correct operation are guaranteed. Principally, 

adequate insulation must be ensured to prevent contaminants from being 

introduced, and the appropriate pressure and temperature must also be 

maintained.  

 

Another advantage of using a sensor camera is facilitating the 

measurement process because the volatiles will be in greater concentration and 

have more contact with the active element of the sensors, which allows a better 

and faster response of the same. It has also been found experimentally that the 

more airtight the sensor chamber, the better the mentioned advantages are 

exploited. Figure 4 shows the photograph of a sensor chamber and different kinds 

of chemical sensors. It is important to mention that gas sensor arrays usually use 

sensors of the same type but different references (Example: TGS822, TGS821, 

TGS813, etc.) to obtain a more significant overlap between the signals and to 

facilitate the classification tasks and odor detection. 

Additional to this module is the volatile transport system, which conditions 

the operation and allows the measurement and purging processes of the sensors to 

be carried out. It is a system that is responsible for transporting to the sensor 

chamber the volatiles released by the sample or element to be analyzed. Sometimes 

the odor sample is injected into the sensor chamber manually, with the consequent 

problems of error and slowness that this implies. At other times, an automatic 

system is responsible for transporting the odorous or volatile molecules, extracting 

them from the area where the sample is located through the injection of some type 

of gas or air until they are taken to the sensor chamber. Also, the electronic smell 

systems mostly have some cleaning mechanism of the sensor chamber. Successive 

measurements are made starting from the same initial conditions, and the 

repeatability of the results is guaranteed. 
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Figure 4 – Sensing system: concentration chamber 

 

Source: (DURÁN; VELÁSQUEZ; GUALDRON, 2012) 

A chemical sensor generates a transient response to a target chemical 

vapor, which is affected by several parameters, including target and interfering 

chemicals, the concentration of target chemical, odor flow rate, temperature, 

pressure, humidity, types of chemical sensor and chemical interface, etc. In 

chemical vapor sensing applications, steady Sij (response of j-th sensor in the array 

for i-th chemical analyte) and transient response Sij(t) are useful in chemical 

identity information extraction. The response vector of a sensor array (set of n 

sensors) to the i-th chemical compound can be represented as Si = (Si1, Si2, ……, Sij, 

….Sin). Likewise, sensor array response to m different chemical compounds can be 

represented by a response matrix S1 as in the equation (2-1)(JHA et al., 2019). 

 

𝐒𝟏 = [

𝑆11 𝑆12 … … 𝑆1𝑛

𝑆21 𝑆22 … … 𝑆2𝑛

⋮ ⋮ ⋮ 
𝑆𝑚1 𝑆𝑚2 … … 𝑆𝑚𝑛

] (2-1) 

2.3.3 Processing System 

In most cases, the processing system consists of a computer with the 

appropriate software to track the data obtained from the sensors. Pre-processing 

techniques are applied to those data to extract the static parameters of the 

measures and to reduce the amount of information to be analyzed. Multivariate 
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analysis techniques are employed, such as Principal Components Analysis (PCA) 

and pattern recognition as Networks Artificial neurons (RNA), Support Vectors 

Machines (SVM), among others, to perform tasks such as classification, 

discrimination, prediction, quantification of samples according to their 

organoleptic characteristics. 

 

Table 1 – The most used supervised and unsupervised classification methods 

Supervised methods Unsupervised methods 

Back-Propagation Neural Networks - BPNN Self-Organizing Map (SOM) 

SVM Hierarchical Cluster Analysis (HCA) 

K-nearest neighbor - KNN K-means clustering 

Naïve Bayes - NB Fuzzy clustering 

Linear Discriminant Analysis - LDA  

Adaptive Resonance Theory Map - ARTMAP  

Source: Own  

 

Besides visual discrimination of chemical compounds in feature space, 

selected features are used to input classification methods for their class 

identification (qualitative recognition) and the input of quantification methods for 

concentration estimation. The classification methods are categorized into 

supervised, unsupervised, and reinforcement strategies. The most used supervised 

classification methods and unsupervised methods are in Table 1. Unsupervised 

methods are used to group the chemical compounds using the sensor array 

response or their extracted features. The third category of methods, based on 

reinforcement learning, doesn't require the obvious sensor response to a chemical 

compound and their class information but explores sensor response space in some 

tunable way, such as greedy search. Better class recognition efficiency is achieved 

with the SVM classifier compared to the rest three classification methods 

(RODRIGUEZ GAMBOA, Juan C et al., 2021). SVM method is extensively used for 

classification, feature extraction, clustering, outlier removal, and regression tasks 
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in various disciplines. It is used primarily in class recognition of chemical 

compounds by the sensor array response processing using PCA, KPCA extracted 

features as input (JHA et al., 2019). 

 

2.4 Gas sensors 

There are different types of gas sensors for use in odor recognition systems. 

The most used are Chemoresistive gas sensor based on n-type metal oxide 

nanostructures MOX, FET-Based gas sensor, solid state electrochemical gas 

sensor (SSES), Quartz Crystal Microbalance (QCM) based gas sensor, and others 

devices based on surface ionization, optical (photoluminescence), magnetic 

(magneto-optical Kerr effect), and transduction mechanisms (HU et al., 2018; 

PONZONI et al., 2017). A brief comparison to the first four types of sensors has 

been given according to aspects of sensitivity, selectivity, speed, cost, size (Table 

2).  

 

Table 2 – Comparisons of different gas sensing technologies 

Gas sensor types Sensitivity Selectivity Speed Cost Size 

Chemoresistor High Medium Fast Low Small 

FET High Medium Fast Medium Small 

SSES High Good Fast Low Large 

QCM High Poor Medium High Medium 

Source: (HU et al., 2018) 

 

This thesis focuses on MOX gas sensors. These sensors are devices that 

consist of two main parts, the first is an active element which changes its physical 

or chemical properties in the presence of that which it detects, and the second part 

is a transducer, which converts the changes in the properties of the active element 

into an electrical signal. These sensors typically have a selective membrane, 
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preventing the passage of particles or unwanted material, acting as a first noise 

filter. Figure 5 shows a simplified diagram of a device of this type, in which the 

main parts of a gas sensor and the nature of the inputs and outputs can be seen 

(RODRÍGUEZ-GAMBOA; ALBARRACÍN-ESTRADA; DELGADO-TREJOS, 

2011). 

 

Figure 5 – Top: Simplified scheme of a chemical sensor for the detection of VOCs. Bottom: Signal 

of a one-single sensor in conductance (G) units expressed in milliSiemens (mS) 

Source: Own 

 

Figure 6 depicts how these sensors work in special applications at different 

temperature ranges (green arrow: room temperature, red arrow: high temperature, 

purple arrow: both room and high temperature). For example, chemoresistors and 

FET can work at both room and high temperature. Solid-state electrochemical gas 

sensor can work at high temperatures only with the limitation of the solid 

electrolyte. QCM always works at room temperature. From the viewpoint of 

applications, all the fields prefer to work at room temperature; however, disease 

diagnosis, environmental monitoring, and agricultural production also accept 

working at high temperatures (HU et al., 2018). Given the characteristics of 
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chemoresistors (MOX sensors), these are the most widely used and will focus on 

this work. The follows paragraphs are centered on this kind of sensor. 

After being acquired and stored, the sensors' signals are treated by 

methods of extraction of parameters and pre-processing of data. The technique of 

extracting parameters is fundamental, especially when using MOX sensors 

(RODRÍGUEZ-MÉNDEZ et al., 2016). These base their operation on the change of 

conductivity experienced by the material or active layer of the sensor in the 

presence of reducing gases and/or oxidants. The conductivity change experiences 

transients that lead the active layer of the sensor from a resting situation to a 

conductance that depends on the volatile and its concentration (PONZONI et al., 

2017).  

 

Figure 6 – Network diagram of E-Nose indicates the E-Nose technologies, working conditions, and 

applications 

 

Source: (HU et al., 2018) 
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The type of signals obtained from a 6-sensor matrix is shown in Figure 7, 

where the response of the sensors to a wine measurement is depicted.  

 

Figure 7 – Wine measurement acquired with O-NOSE; S1, S2…, S6: gas sensor outputs in 

conductance units G 

Source: (RODRIGUEZ GAMBOA, Juan C.; ALBARRACIN E., Eva Susana; SILVA, Adenilton J. 

Da; et al., 2019) 

 

Figure 8 shows the stages in the measurement (baseline, gas absorption, 

and gas desorption). Wine measurement acquired with O-NOSE; S1, S2, …, S6: 

gas sensor outputs in conductance units G.  

 

Figure 8 – Output of a gas sensor. Gi: initial conductance value, Gf: final conductance value, ∆G: 

maximal conductance change concerning the baseline 

Source: (RODRIGUEZ GAMBOA, Juan C.; ALBARRACIN E., Eva Susana; SILVA, Adenilton J. 

Da; et al., 2019) 
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2.5 Drift in gas sensors 

Drift in devices with chemical sensor arrays has a rather complex and 

inevitable effect. Different sources can generate a drift. The aging of the sensor 

and the device's poisoning stand out, which is directly reflected by the change in 

the chemical layer for the volatile detection (reorganization of sensor material and 

contamination). Also implicit in the experimental operation that includes the 

thermal and memory effects of the sensors, the changes in the environment, and 

the appearance of other signals caused by the noise of the system (ZIYATDINOV, 

A. et al., 2010) 

 

2.6 The concept of drift 

The response of a gas sensor contains not only its true signal but also some 

disturbances. These, in turn, are composed of multiple frequencies, and all of them 

affect the signal. The part that corresponds to high frequency is called noise, and 

the part that is made up of low frequency is often known as drift, which can be 

seen as a gradual change over time in sensor response under constant conditions. 

Drift is a dynamic process caused by chemical changes in the sensors, specifically 

in the active layer of the sensors (ARTURSSON et al., 2000). 

 

2.6.1 Drift Problems 

A limitation of current E-nose built with chemical sensors is the drifts 

inherent in the signals, causing a slow random variation of the sensor response 

over time when exposed to some gases under controlled conditions. 

The drift effect can affect the sensor baseline part when it is additive and 

the sensitivity when it is multiplicative. A consequence of the drift influence is that 

the previous learning of the patterns of the signals delivered by the sensors 

becomes obsolete over time. Consequently, systems lose the ability to identify 
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already recognized odors. The most effective means of drift compensation is 

periodic recalibration with a reference gas that is chemically stable and highly 

correlated with the target analytes in terms of sensor performance. In this way, 

the response of the sensor matrix for the calibration gas can be directly subtracted 

from the analytes' response. Thus, a temporal drift model is deduced for each 

sensor or the sensor matrix (GUTIERREZ-OSUNA, 2002). 

To understand the effects of drifts, refer to Figure 9, where the main 

components of the PCA analysis of the data are plotted. It is observed in the left 

image how the drift causes the resulting data from the sensor array to present 

changes visualized as data with greater dispersion and less separation between 

classes. The image on the right-hand side represents the main components of the 

data to which drift correction has been applied, using the component correction 

technique. 

 

Figure 9 – Projection of the first two Principal Components of the response of a set of sensors to 

the presence of different gas mixtures. Left before and right after offsetting drift 

Source: (GUTIERREZ-OSUNA, 2002) 

 

This same effect can be observed if the response signal of the sensors is 

analyzed on the time axis, as seen in Figure 10. This Figure was adapted from the 

work presented by (ZIYATDINOV, A. et al., 2010), to describe the strong influence 
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of drifts on the signals delivered by the sensors. The figure shows the steady-state 

signals of a sensor in 7 months when the sensor is subjected to three kinds of gases 

with different concentrations. 

 

Figure 10 – Analysis of the behavior over time of the response signals of a sensor subjected to the 

presence of three gases with different concentrations, influenced by drifts 

 

 

 

Source: (ZIYATDINOV, A. et al., 2010) 

 

The peaks of the signals indicate short-term drifts caused by some 

temporary changes, such as the heating of the sensors. On the other hand, long-

term drifts can be observed in changes in the baseline of similar signals for all 

classes. 

Another important observation of this graph corresponds to the response 

signals of the sensor in the presence of propanoic acid. These have a more stable 

behavior over time and are less prone to the effect of drifts. However, it is 

observable how the sensor response changes over time. In this case, the period 

analyzed was only seven months, enough time to require recalibration of the 

sensors. 

GAS A GAS B GAS C 
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As reflected in the previous analysis, the behavior of the data causes the 

classification system resulting from pattern recognition to become obsolete after a 

certain time. 

 

2.6.2 Ways to address the drift problem 

In the literature, there are mainly three different approaches to mitigate 

the effects of drift (see Figure 11). The first of them seeks to improve the physical 

part, designing and building new sensors. The second approach aims to correct 

drift from the processing stage, applying multivariate statistical analysis 

techniques to achieve an effective representation of drifts and thus be able to 

eliminate them from the system. Finally, the third points to the development of 

the classification approach. 

 

Figure 11 – Main approaches to mitigate the effects of drift 

Source: Own 
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This doctoral thesis restricts the analysis of the drift problem to the 

approach that focuses on the classification stage, considering that currently 

working with the raw data of the signals of artificial smell systems is not a 

limitation. For this reason, the rapid detection method is proposed to analyze the 

response of the classifier to different drift scenarios in the data. Drift analysis and 

its effect from sample entropy are also addressed to explain the conditions that can 

trigger greater drift in data from artificial smell systems. 
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3 MATERIALS 

 

Two databases were used. The first one corresponds to a database with 

experimental measurements from the University of California. The second is a set 

of synthetic data in different work scenarios generated with the chemosensors 

package in R. The following sections detail the characteristics of the databases 

used. 

 

3.1 Database: Gas Sensor Array Drift Dataset at Different Concentrations 

We use the Gas Sensor Array Drift Dataset at Different Concentrations 

(FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015) released in the 

UCI Machine Learning Repository. This dataset provides 13910 measurements 

from 16 chemical sensors exposed to six gases at different concentration levels 

collected over three years, being suitable to tackle a variety of challenges in 

chemical sensing such as sensor drift, sensor failure, or system calibration, as well 

discriminatory and quantifying issues. The artificial olfactory system used to 

generate this dataset had a chemical detection platform with four types of sensors 

tagged as TGS2600, TGS2602, TGS2610, TGS2620 (four of each type), 

commercially available metal-oxide gas sensors manufactured and commercialized 

by Figaro Inc. The odor identity and concentration values in parts-per-million by 

volume (ppmv) are listed in Table 3. The data distribution over 36 months is shown 

in Table 4, where it is detailed the dataset organization into ten batches with the 

number of measurements per class (VERGARA et al., 2012) 

Table 5 complements the above with the total of examples per month and 

batch for each gas. The dotted line in this table highlights the months in which do 

not make measurements. 
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Table 3 – Analytes and concentrations in the dataset 

Analytes Concentrations in ppmv 

Ammonia 50, 60, 70, 75, 80, 90, 100, 110, 120, 125, 130, 140, 150, 160, 170, 175, 180, 190, 

200, 210, 220, 225, 230, 240, 250, 260, 270, 275, 280, 290, 300, 350, 400, 450, 500, 

600, 700, 750, 800, 900, 950, 1000 

Acetaldehyde 5, 10, 13, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 120, 125, 130, 140, 150, 

160, 170, 175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 300, 500 

Acetone 12, 25, 38, 50, 60, 62, 70, 75, 80, 88, 90, 100, 110, 120, 125, 130, 140, 150, 170, 

175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 260, 270, 275, 280, 290, 300, 350, 

400, 450, 500, 1000 

Ethylene 10, 20, 25, 30, 35, 40, 50, 60, 70, 75, 90, 100, 110, 120, 125, 130, 140, 150, 160, 

170, 175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 300 

Ethanol 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, 110, 120, 125, 130, 140, 150, 160, 

170, 175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 500, 600 

Toluene 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,70, 75, 80, 85, 90, 95, 100 

Source: (FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015) 

 

Table 4 – Data distribution over 36 months 

Months Batch Number of samples 

  
Ethanol 

Gas 1 

Ethylene 

Gas 2 

Ammonia 

Gas 3 

Acetaldehyde 

Gas 4 

Acetone 

Gas 5 

Toluene 

Gas 6 

1, 2 1 90 98 83 30 70 74 

3, 4, 8, 9, 10 2 164 334 100 109 532 5 

11, 12, 13 3 365 490 216 240 275 0 

14, 15 4 64 43 12 30 12 0 

16 5 28 40 20 46 63 0 

17, 18, 19, 20 6 514 574 110 29 606 467 

21 7 649 662 360 744 630 568 

22, 23 8 30 30 40 33 143 18 

24, 30 9 61 55 100 75 78 101 

36 10 600 600 600 600 600 600 

 Total 2565 2926 1641 1936 3009 1833 

Source: (FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015) 

The authors of dataset related in (FONOLLOSA; RODRÍGUEZ-LUJÁN; 

HUERTA, Ramón, 2015) that the data was collected ensuring a sufficient number 
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of experiments in each batch, as uniformly distributed as possible. In addition, 

they explain that a few measurements, mainly in batch 7, appear at lower 

concentration levels than detailed in Table 3. This concentration mismatch is due 

to some experimental error, but they decided to include those samples in the 

dataset for the sake of completeness. 

 

Table 5 – Dataset details 

Batch Months Number of samples 

   Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 
per 

month 

per 

batch 

1 1 84 88 76 0 0 0 248  

 2 6 10 7 30 70 74 197 445 

2 3 70 140 0 0 7 0 217   

 4 82 170 0 4 0 5 261   

 8 0 20 0 0 0 0 20  

 9 11 4 0 0 0 0 15  

 10 1 0 100 105 525 0 731 1244 

3 11 360 146 0 0 0 0 506   

 12 0 334 0 192 0 0 526  

 13 5 10 216 48 275 0 554 1586 

4 14 52 43 0 18 0 0 113   

 15 12 0 12 12 12 0 48 161 

5 16 28 40 20 46 63 0 197 197 

6 17 0 20 0 0 0 0 20   

 18 0 3 0 0 0 0 3  

 19 264 100 110 29 140 9 652  

 20 250 451 0 0 466 458 1625 2300 

7 21 649 662 360 744 630 568 3613 3613 

8 22 0 0 25 15 123 0 163   

 23 30 30 15 18 20 18 131 294 

9 24 0 0 0 25 28 1 54   

 30 61 55 100 50 50 100 416 470 

10 36 600 600 600 600 600 600 3600 3600 

Source: (FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015) 
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The measurement procedure to generate the dataset related in 

(FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015; VERGARA et al., 

2012) consisting of three steps. First, it was circulated synthetic dry air (10% R.H.) 

through the sensing chamber for 50 s to stabilize the sensors and measure the 

baseline of the sensor response. Second, it was randomly added one of the analytes 

of interest to the carrier gas and made it circulate through the sensor chamber 

during 100 s. Finally, it was re-circulated clean dry air for the subsequent 200 s to 

acquire the sensors' recovery and have the system ready for a new measurement. 

The dynamic response of each sensor was recorded at a sample rate of 100 Hz. 

Hence, each measurement produced a 16-channel time series sequence. The 

channels were paired with the sensors to acquire sensors' responses. The order of 

the sensors in the dataset is as follows (CH0-CH15): TGS2602; TGS2602; 

TGS2600; TGS2600; TGS2610; TGS2610; TGS2620; TGS2620; TGS2602; 

TGS2602; TGS2600; TGS2600; TGS2610; TGS2610; TGS2620; TGS2620. 

Each 16-channel time series acquired in each measurement were 

represented in the database by an aggregate of features reflecting the dynamic 

processes occurring at the sensor surface in reaction to the chemical substance 

being evaluated. In particular, two distinct types of features is referred to in 

(FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015) for the creation of 

this dataset: (i) the so-called steady-state feature ∆𝑅 = 𝑚𝑎𝑥𝑘𝑟[𝑘] − 𝑚𝑖𝑛𝑘𝑟[𝑘], 

defined as the maximal resistance change with respect to the baseline and its ∆𝑅 

normalized version (‖∆𝑅‖ = (𝑚𝑎𝑥𝑘𝑟[𝑘] − 𝑚𝑖𝑛𝑘𝑟[𝑘]) 𝑚𝑖𝑛𝑘𝑟[𝑘]⁄ ) expressed by the 

ratio of the maximal resistance and the baseline values, where 𝑟[𝑘] is the time 

profile of sensor resistance, 𝑘 is the discrete time indexing the recording interval 

[0, 𝑇] when the chemical vapor is present in the test chamber. And (ii), an aggregate 

of features reflecting the sensor dynamics of the increasing/decaying transient 

portion of the sensor response during the entire measurement that converts the 

transient portion of the sensor response into a real scalar by estimating the 

maximum/minimum value y[k] for the rising/decaying portion of the exponential 

moving average of the sensor response: 
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𝑦[𝑘] = (1 − 𝛼)𝑦[𝑘 − 1] + 𝛼(𝑥[𝑘] − 𝑥[𝑘 − 1]) (3-1) 

 

where [𝑘 = 1,2, . . . , 𝑇], 𝑦[0] its initial condition, set to zero (y[0] = 0, and the 

scalar 𝛼(𝛼 ∈ {0,1}) being a smoothing parameter of the operator such as was 

defined in  (VERGARA et al., 2012). The corresponding authors of the dataset set 

three different values for 𝛼(𝛼 = 0.1, 𝛼 = 0.01, 𝑎𝑛𝑑 𝛼 = 0.001) to obtain three 

different features. They start from the pre-recorded rising portion of the sensor 

response and three additional features with the same 𝛼 values for the decaying 

portion of the sensor response, covering the entire sensor response using the 

exponential moving average (emaα). Consequently, each 16-channel time series 

acquired in each measurement was represented in the database as a 

transformation mapping the sensor response to a lower dimension space 

preserving the most meaningful portion of the information contained in the 

original sensor signal. It represented each sensor signal during each measurement 

by 8-features, and given that the detection platform had 16-channel, measurement 

results in a 128-dimensional feature vector. The steady-state features and 

transient that represent the sensors' time series data are summarized in Table 6. 

 

Table 6 – Features extracted from the time series data 

Steady-state features Transient features  

 Rising portion Decaying portion 

∆𝑅 𝑚𝑎𝑥𝑘  𝑒𝑚𝑎𝛼=0.001(𝑟[𝑘]) 𝑚𝑖𝑛𝑘  𝑒𝑚𝑎𝛼=0.001(𝑟[𝑘]) 

‖∆𝑅‖ 𝑚𝑎𝑥𝑘  𝑒𝑚𝑎𝛼=0.01(𝑟[𝑘]) 𝑚𝑖𝑛𝑘  𝑒𝑚𝑎𝛼=0.01(𝑟[𝑘]) 

 𝑚𝑎𝑥𝑘  𝑒𝑚𝑎𝛼=0.1(𝑟[𝑘]) 𝑚𝑖𝑛𝑘  𝑒𝑚𝑎𝛼=0.1(𝑟[𝑘]) 

Source: (VERGARA et al., 2012) 

 

We plot, in Figure 12 (b)-(d), an example of the exponential moving average 

of the sensor response, calculated by the equation (3-1), with α=0.1, α=0.01, and 

α=0.001, for a gas sensor signal. It is possible to identify the six transient features 
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(two per each emaα) extracted from a sensor signal response and stored in the 

database. The ∆𝑅 steady-state feature and the concerned ‖∆𝑅‖ were calculated 

from the curve response values of the sensor, panel (a). 

 

Figure 12 – Typical response of a chemical gas sensor and the corresponding exponential moving 

average signals.  Panel (a), sensor curve response that shows the three phases of a measurement: 

baseline measurement (made with pure air), test gas measurement (when the chemical analyte is 

injected, in gas form, to the test chamber), and the recovery phase (during which the sensor again 

is exposed to pure air). Panels (b)-(d), exponential moving average of the sensor response for α = 

0.1, α = 0.01, and α = 0.001. The dotted red lines signalize the maximum values of the curve 

(𝑚𝑎𝑥𝑘𝑟[𝑘]), and the dotted blue lines signalize the minimum values of the curve (𝑚𝑖𝑛𝑘𝑟[𝑘]) 

 

Source: Own 
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The database authors related in (FONOLLOSA; RODRÍGUEZ-LUJÁN; 

HUERTA, Ramón, 2015) some experimental error in a few measurements, mainly 

in batch 7, in which appear lower concentration levels than detailed in Table 3, but 

in terms of guaranteeing the data completeness, they decided to include those 

samples in the dataset. 

 

3.2 Synthetic data  

It consists of an array of virtual sensors generated by a package in R 

language, called chemosensors, which is freely accessible. The workflow to 

generate the synthetic data from chemosensors consists of creating the work 

scenario, establishing the parameters of the array of sensors and finally generating 

the characteristics matrix and the vector of classes or labels. This synthetic data 

generator package takes as reference the experimental measurements of UNIMAN 

belonging to the University of Manchester in the United Kingdom, which contains 

3925 samples taken in 10 months with 17 sensors and using three analytes, 

ammonia, propanoic acid and n-butanol at different levels of concentration 

(ZIYATDINOV, Andrey; PERERA-LLUNA, 2014). 

The synthetic data generator package is useful for comparing statistical 

pattern recognition in artificial smell. It belongs to the Neurochem project and 

contains virtual chemical sensors. The synthetic data is used because of the 

importance of performing drift analysis, knowing previously the drift components 

added to the data to perform the exploratory analysis of the impact caused by the 

drift in the odor recognition systems. 

Table 7 presents the list of parameters used in chemosensors. This work 

highlights the use of the dsd and ndcomp parameters to analyze the effect of drift 

in the data. 
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Table 7 – Description of the basic parameters of SensorsArray class necessary to generate a 

virtual sensor array 

Parameter Default value Range of values Short description 

A 1:2 1,2,… ….17 Sensor type 

nsensors 2 1,2,… .. Number of sensors 

gnames 3 1,2,3 Number of gases 

concUnits Percentage  Concentration units 

alpha 2,25 > 0 Non-linearity of the sensor 

beta 2 ≥0 Sensor diversity 

csd 0,1 ≥0 Noise concentration 

ssd 0,1 ≥0 Sensor noise 

dsd 0,1 ≥0 Drift noise 

ndcomp 1 1,2,3 Number of drift components 

ndvar 0,86 (0,1] Importance of drift components 

tunit 1 1,2….. Gas pulse length 

Source: (ZIYATDINOV, Andrey; PERERA-LLUNA, 2014) 

 

3.3 Electronic Nose Dataset for Detection of Wine Spoilage thresholds 

This database was collected during the doctorate, and we use it to test and 

propose the rapid detection approach for E-Nose. The recorded database 

corresponds to time series obtained for an application of wine quality detection 

focused on spoilage thresholds, containing 235 recorded measurements of wines 

divided into three groups and labeled as high quality (HQ), average quality (AQ), 

and low quality (LQ), in addition to 65 ethanol measurements, which was collected 

using an electronic nose based on Metal Oxide Semiconductor (MOS) gas sensors, 

self-developed at the Universidade Federal Rural de Pernambuco (Brazil). A data 

paper with the details was published in Data in Brief journal (RODRIGUEZ 

GAMBOA, Juan C.; ALBARRACIN E., Eva Susana; SILVA, Adenilton J. DA; E. 

FERREIRA, Tiago A., 2019), and also can be accessed publicly at the repository: 

(RODRIGUEZ GAMBOA, J.C. et al., 2019). 

We used 22 bottles of commercial wines of different varieties and vintages, 

elaborated in four wineries of the São Francisco valley (Pernambuco-Brazil). The 

spoiled samples obtained from 13 of the 22 bottles were randomly selected and left 

open for six months before starting the measurements (low- quality LQ wines). 
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Besides, four bottles were opened two weeks before beginning the data collection 

(average-quality AQ wines). The remaining five bottles opened at the starting time 

of each measurement (high-quality HQ wines). Also, we measured isolated ethanol 

in concentrations (v/v): 2, 5, 10, 20, 30, and 40ml of ethanol diluted in distilled 

water to make solutions of 200 ml. These concentrations allow guaranteeing a 

range that covers the different possible values in wines with and without spoilage. 

To ensure the repeatability of the experiments using O-NOSE, we collected 

between 10 and 11 samples of 1mL of each wine bottle and around 10 and 12 of the 

ethanol samples at their different concentrations. Therefore, the database contains 

235 wines measurements divided into three groups: high quality (HQ), average 

quality (AQ), and low quality (LQ), with 51, 43, and 141 measurements, 

respectively, and 65 ethanol measurements (RODRIGUEZ GAMBOA, Juan C.; 

ALBARRACIN E., Eva Susana; SILVA, Adenilton J. DA; FERREIRA, 2019). 
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4 METHODS 

 

4.1 Sample Entropy 

Sample entropy (SampEn) was introduced by Richman and Moorman 

(RICHMAN et al., 2000) as a modification of the approximate entropy (ApEn) 

(PINCUS, 1991). Both methods serve to analyze the dynamics of time-series by 

evaluating their regularity and complexity level. A greater regularity (lower 

complexity) produces lower values of SampEn, whereas, for a series with higher 

complexity, the value of SampEn statistic is higher. The applications of sample 

entropy include physiology (LAKE et al., 2002; WENG et al., 2017), geophysics 

(BALASIS et al., 2009), climatology (SHUANGCHENG et al., 2006), hydrology 

(CHOU, 2014), and engineering (ZHAO; YANG, 2012). The essential advantages 

of SampEn in comparison with ApEn are the independence of data amount and 

relatively simple implementation. 

SampEn (m, r, N) is defined as the negative natural logarithm of the 

conditional probability that two sequences of length N, that are similar (within a 

tolerance level r) for m points, remain similar for m +1 points, where self-matches 

are not included in calculating the probability. An algorithm for calculating sample 

entropy can be described as follows [19]. Given a time series of size N, 𝑋 =

 𝑥1, 𝑥2, … , 𝑥𝑁, first N-m+1 vectors 𝐱𝑚(i) of size m are constructed where 𝐱𝑚(i) = 𝑥𝑖, 

𝑥𝑖+1, ..., 𝑥𝑖+𝑚−1, and i=1, ..., N-m+1. The distance 𝑑𝑖,𝑗 between the vectors 𝐱𝑚(i) and 

𝐱𝑚(j) is calculated as 𝑑𝑖,𝑗[𝐱𝑚(𝑖) , 𝐱𝑚(𝑗)] = max{|𝑥𝑖+𝑘 −  𝑥𝑗+𝑘 |: 𝑘 = 0, … , 𝑚 − 1}, for 

each 𝑖 = 1, … , 𝑁 − 𝑚 and 𝑗 = 2, … , 𝑁 − 𝑚 + 1, where 𝑖 ≠ 𝑗 and 𝑗 > 𝑖 to exclude self-

matches. Subsequently, quantities 𝐵𝑖
𝑚(𝑟) =  

𝐵𝑖

𝑁−𝑚−1
 and 𝐴𝑖

𝑚(𝑟) =  
𝐴𝑖

𝑁−𝑚−1
 are 

calculated, where 𝐵𝑖 is the number of vectors 𝐱𝑚(j) of size m that are similar to 

vectors 𝐱𝑚(i) within a tolerance r estimated from 𝑑𝑖,𝑗[𝐱𝑚(𝑖) , 𝐱𝑚(𝑗)] ≤ 𝑟, and 𝐴𝑖 is 

the number of vectors 𝐱𝑚+1(𝑗) that are similar to vectors 𝐱𝑚+1(𝑖). From the 
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individual 𝐵𝑖
𝑚(𝑟) and 𝐴𝑖

𝑚(𝑟) values, the corresponding mean values 𝐵𝑚(𝑟) =

 
1

𝑁−𝑚
(∑ 𝐵𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1 ) and 𝐴𝑚(𝑟) =  

1

𝑁−𝑚
(∑ 𝐴𝑖

𝑚(𝑟)𝑁−𝑚
𝑖=1 ) are now calculated, and finally 

the statistic called sample entropy expressed in (1) is obtained as  

 
𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = −𝑙𝑛 (

𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
). (4-1) 

 

4.1.1 Time-dependent sample entropy 

While formal statistical analysis of time series assumes their stationarity, 

this condition is not always met. In these cases, it is necessary to utilize procedures 

that adequate for nonstationary data series analysis. The time-dependent sample 

entropy is one such method, corresponding to the quantification of irregularity in 

the series at different scales, as a function of time, based on the sliding window 

protocol. This method examines the entropy values from a temporal evolution 

perspective, allowing the application of this technique in nonstationary conditions 

since the series are analyzed by segments (MARTINA et al., 2011; STOSIC, Darko 

et al., 2016). The method to calculate the time-dependent entropy is as follows. 

Given a series of data 𝑋 =  𝑥1, 𝑥2, … , 𝑥𝑁, the sliding window protocol is defined as 

𝑋𝑡 =  𝑥1+𝑡∆, … , 𝑥𝑤+𝑡∆, 𝑡 = 0,1, … , [
𝑁−𝑤

∆
] where 𝑤 ≤ 𝑁 is the window size, ∆ ≤ 𝑤 is the 

sliding step, and the operator [.] denotes taking integer part of the argument. The 

time series values in each window 𝑋𝑡 are used to compute the 𝑆𝑎𝑚𝑝𝐸𝑛𝑡,𝜏(𝑚, 𝑟, 𝑤) at 

a given time t and scale τ.  

 

4.2 Rapid Detection Method for E-Nose 

Although some E-Nose devices claim to perform real-time monitoring, the 

realistic approach to process the sensor array outcomes is achieved offline because 

the measurements need to be completed before the system makes a forecast. The 

previous issue is significant, taking into count that the measurement process 
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generally takes some minutes. This issue is a limitation when the idea is the 

massification of this technology and obtaining responses quickly. 

The conventional approach for data processing in E-Nose implies to use the 

complete response curves of the gas sensors, including the rising state, steady-

state, recovery phases. Besides, it includes steps such as signal pre-processing and 

feature generation/extraction, which entails the selection of a suitable method for 

each stage, increasing the necessary time to find a suitable classifier and forecast 

models (LIU; MENG; ZHANG, X.-N., 2018; QI; MENG; ZENG, 2017). 

Some researchers have focused on reducing the steps and the necessary 

know-how for model generation in recent articles. For instance, in (LIU; ZENG; 

MENG, 2019),the authors proposed a bio-inspired data processing method based 

on a neural network to mimic the mammalian olfactory system with excellent 

results but using the entire measurement curves. In another work (LÄNGKVIST 

et al., 2013), the authors proposed a rapid detection system for meat spoilage using 

an unsupervised technique that considers only the transient response (stacked 

restricted Boltzmann machines and auto-encoders.) Although the obtained models 

offer advantages because the features are learned from data instead of being hand-

designed, it may produce low suitable and inaccurate models due to the 

unsupervised method. 

Further, in (PENG, P. et al., 2018; WEI et al., 2019), the authors explored 

an approach based on raw data treatment. Although this method reduces the steps 

and the development time, they only tested with the whole response curves, then 

must wait until the measurement procedure finalization. 

Consequently, the mentioned issue motivated the research about a rapid 

detection approach for the electronic nose systems. We focused on processing an 

early portion of the signals to reduce the time for making forecasts, testing the 

proposed method in the collected database with wine samples. 
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4.3 Sceneries of Synthetic Database 

This section explains the four work scenarios generated artificially with 

the chemosensors package to address the deviations present in artificial odor 

systems. Figure 13 describes the workflow in the design of these scenarios that 

have been built to analyze the performance of the classifiers using the traditional 

approach versus the rapid detection approach using data with and without drift. 

This research leads to a total of ten databases generated from the four scenarios, 

in which the noise and drift concentration present in the generated data are 

parameterized. Prior knowledge of these values allows analysis of results using 

raw data instead of the traditional method for artificial odor systems, which 

employs feature selection. These 10 synthetic databases are made available to the 

public as part of the results of this research at Mendeley Data: 

https://data.mendeley.com/drafts/s7c74xw673. 

 

Figure 13 – Workflow used for validation of rapid detection method with the synthetic data 

  

Source: Own 
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It is represented in Figure 14 the noise and drift parameters established 

when the synthetic databases were generated with the chemosensors package. 

Note that the first scenario represents the standard goal of the data from electronic 

nose systems, which ideally contain neither drift nor embedded noise in the 

response signals of the sensors. The second, third, and fourth scenarios each 

include three databases in which various combinations of the noise levels and drift 

included in the data are parameterized. 

In total, among the four scenarios, ten synthetic databases were generated. 

These ten databases are used to compare the traditional method used in artificial 

odor systems, which consists of selected characteristics in the preprocessing stage, 

versus raw data from the signals, without a selection of features. In the latter, it 

is validated whether the rapid detection method manages to find an early portion 

of the signal that is not affected by drift in terms of the classifier's success rates. 

Several experiments were performed with different classifiers to test and validate 

this hypothesis. 

Below is a description of the work scenarios generated with three gases A, 

B, and C at different concentrations. Such scenarios contain measurements that 

are presented in chronological order to build the corresponding training and 

validation sets. Table 8 shows the values established for the variables csd, dsd, and 

ssd. After testing other quantities, these were chosen, finding similar results, so it 

was decided to analyze these data sets. Additional parameters associated with the 

generation of the data were taken at their default values. 
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Figure 14 – Work scenarios with artificial data. Ten synthetic databases were generated to 

analyze the rapid detection method against the selection of characteristics 

 

Source: Own 
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Table 8 – Parameters of the databases generated with chemosensors package. 

 Data Base csd  ssd dsd 
Noise 

quantifier 
Drift quantifier 

First scenario 1 0 0 0 0 0 

Second scenario 

2A 1 1 1 Low Low 

2B 1.5 1.5 3 Medium Medium 

2C 2 2 5 High High 

Third scenario 

3A 0 0 1 0 Low 

3B 0 0 3 0 Medium 

3C 0 0 5 0 High 

Fourth scenario 

4A 1 1 0 Low 0 

4B 2 2 0 High 0 

4C 1.5 1.5 0 Medium 0 

Source: Own 

 

Gases A, B, and C were chosen in different concentrations as specified in 

Table 9. 

It is seen from Figure 15 an example of the scenario defined as a 

classification on analyte A, B, and C with both training and validation sets 

consisting of five pulses of concentrations of A 0.05, A 0.03, B 0.03, B 0.05, C 0.1 

vol.%. 

 

Table 9 – Gases concentration in the synthetics databases 

Gas or analyte Concentration (a.u.) 

A 0.05 

0.03 

B 0.03 

0.05 

C 0.1 

0.5 

Source: Own 
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Figure 15 – Plot showing the training and validation set in a classification work scenario with 

different concentrations of gases A, B, C 

Source: Own 

Also, each dataset was constructed using arrays of 17 gas sensors 

considering that the artificial data generator package uses the profiles of 17 

sensors used in the UNIMAN database. Therefore, there are arrays of 17 sensors 

that are used to generate artificial data in each database cited in Table 8. Each 

database file has 86,400 lines that correspond to 360 sequential measurements of 

analytes A, B, and C at the concentrations specified in Table 9. Figure 16 

illustrates a set of six sequential measurements in which the gas absorption and 

desorption phases are observed. In this case, the signals' drift and noise are set to 

zero in the data generator parameters. The upper part of the figure shows the 

concentration and the gas type injected to each corresponding response of the 17-

sensors array represented by S1 to S17. Consequently, Figure 16 represents the 

behavior of the available signals in the first scenario of synthetic data referenced 

in Table 8. 
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Figure 16 – Plot showing the signal responses of the sensor array when analytes at different 

concentrations of gases A, B, C are injected 

Source: Own 

 

In contrast, a set of six measurements is shown in Figure 17, but with a 

fraction of drift added in the data generation. However, the noise and noise 

concentration parameters of the sensors are set to zero. On the other hand, when 

there is no drift presence in the signals, but there is noise, the signals' behavior is 

as represented in Figure 19. Finally, a set like the previous one is drawn in Figure 

18, but with noise and drifts immersed in the data generation. 

To widen the differences between the four work scenarios, some examples 

are presented in Figure 20, Figure 21, Figure 22 and Figure 23 from the principal 

components analysis. These graphs allow us to identify how the presence of drifts 

in the signals increases the complexity in the system when the groups of analytes 

represented in the PCA space overlap each other and the random and progressive 

change in the response signals of the matrix of sensors (see Figure 21 and Figure 

22), even when air is being detected. 
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Figure 17 – Plot representing the second synthetic data scenario. Analytes A, B, and C are 

injected at different concentrations and there is added noise and drift in the response signals from 

the sensor array 

Source: Own 

Figure 18 – Plot representing the third synthetic data scenario. Analytes A, B, and C are injected 

at different concentrations. There is added drift, but noise is set to zero in the response signals 

from the sensor array

Source: Own 
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Figure 19 – Plot representing the fourth synthetic data scenario. Analytes A, B, and C are 

injected at different concentrations, and only noise is added to the responses of the sensor array 

Source: Own 

Figure 20 – Score plot corresponding to the Principal Component Analysis of the sensor array to 

the first work scenario, without noise and drift 

Source: Own 
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Figure 21 – Score plot corresponding to the Principal Component Analysis of the sensor array to 

the second work scenario. With noise and with drift 

Source: Own 

Figure 22 – Score plot corresponding to the Principal Component Analysis of the sensor array to 

the third work scenario. Without noise and with drift 

Source: Own 
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Figure 23 – Score plot corresponding to the Principal Component Analysis of the sensor array to 

the fourth work scenario. With noise and without drift. 

Source: Own 

 

In each workspace, 360 measurements were generated in chronological 

order. Each measure in time is composed of a matrix of 240 consecutive samples 

per unit of time (lines of the matrix) for each of the 17 sensors that make up the 

array. Consequently, each database generated contains 86,400 lines per 17 

columns, in addition to the three columns that indicate the kind of gas injected and 

its respective concentration. 

The methodology proposed in this thesis seeks to take advantage of this 

synthetic data generator by obtaining raw data from response signals from an E-

Nose that will be used to present them to several classifiers. The raw data of the 

signals is necessary to validate the rapid detection methodology that takes 

advantage of the benefits of classifiers to process large volumes of information. The 

foregoing is a strong point of this research. In the literature, there are no databases 

available with measurements in which drift control is had and containing the raw 
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data of the signals. It is clarified that the database delivered to the academic 

community by (FONOLLOSA; RODRÍGUEZ-LUJÁN; HUERTA, Ramón, 2015) 

contains the characteristics presented in the table for each measurement but does 

not provide the raw data. 

With the rapid detection approach, the analysis is presented using the 

complete signal delivered by the sensor matrix or by identifying an early portion 

of the signal that allows for a correct prediction, mitigating the effect caused by 

drift. This early potion is determined by applying a sliding window, seeking to find 

the most effective portion to mitigate the effect of drifts. 

Figure 24 – Plot showing the signal responses of the sensor array when analytes at different 

concentrations of gases A, B, C are injected. The chronological sequence of the 360 measurements 

is represented in this graph. In the upper part, the injected gases and their concentrations are 

represented. 

Source: Own 

Below are the plots with the sensor response data. The 360 consecutive 

measurements are plotted in each graph in time for the different work scenarios 

proposed. In the lower part of the graphs, the response signals of the sensors are 

represented, and in the upper part of the graph, the input gases and their 
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concentrations are represented.  Figure 24 contains the response signals of the first 

working scenario in which data is established without noise and drift. 

Note that Figure 25 and Figure 26 clearly show the effect of drifts on the 

gas sensor signals. This effect generates such degradation in the signals that the 

set of data presented to the classifier in chronological order makes the patterns 

learned in training obscure with time and the artificial smell system. On the 

contrary, in Figure 24 and Figure 27 that correspond to the first and fourth work 

scenarios, respectively, the drift and degradation of the sensor responses are not 

noticeable thanks to the drift in these scenarios being set to zero. 

 

Figure 25 – Plot showing the signal responses of the sensor array when analytes at different 

concentrations of gases A, B, C are injected. The chronological sequence of the 360 measurements 

is represented in this graph. These correspond to the second work scenario (with noise and drifts). 

In the upper part, the injected gases and their concentrations are represented 

Source: Own 
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Figure 26 – Plot showing the signal responses of the sensor array when analytes at different 

concentrations of gases A, B, C are injected. The chronological sequence of the 360 measurements 

is represented in this graph. These correspond to the third work scenario (without noise and with 

drifts). In the upper part, the injected gases and their concentrations are represented

Source: Own 

Figure 27 – Plot showing the signal responses of the sensor array when analytes at different 

concentrations of gases A, B, C are injected. The chronological sequence of the 360 measurements 

is represented in this graph. These correspond to the fourth work scenario (with noise and 

without drifts). In the upper part, the injected gases and their concentrations are represented

Source: Own 
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4.3.1 Work Scenarios using Feature extraction 

The most common groups of characteristics extracted from the gas sensors 

signals are the steady and transient state features (YAN et al., 2015). We used 

eight features to capture each gas sensor's dynamic and static behavior, based on 

(RODRIGUEZ GAMBOA, Juan C et al., 2021). We obtained a 136 columns 

characteristics matrix (synthetic database using 17 sensors), where each row 

represents the fingerprint of one measurement and three additional columns 

indicating the gas type and the corresponding concentration.  It was chosen the 

following steady-state characteristics: ∆𝐺 = 𝑚𝑎𝑥𝑘𝑔[𝑘] − 𝑚𝑖𝑛𝑘𝑔[𝑘] defined as the 

maximal conductance change concerning the baseline, and its normalized 

version‖∆𝐺‖ = (𝑚𝑎𝑥𝑘𝑔[𝑘] − 𝑚𝑖𝑛𝑘𝑔[𝑘]) 𝑚𝑖𝑛𝑘𝑔[𝑘]⁄ , as well, : ∆𝐺 = |𝑔[𝑁] − 𝑔[1]| 

defined as the conductance change between the final point to the initial point, and 

its normalized version ‖∆𝐺‖ = (| 𝑔[𝑁] − 𝑔[1]|) 𝑔[1]⁄ . Besides, the area under the 

curve in the absorption 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 =   ∫ 𝑔[𝑘]
𝑚𝑎𝑥𝑘𝑔[𝑘]

𝑔[1]
 and desorption portions 

of the gas 𝑑𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 =   ∫ 𝑔[𝑘]
𝑔[𝑁]

𝑚𝑎𝑥𝑘𝑔[𝑘]
. Additionally, we had an aggregate of 

features reflecting the dynamics of the rising/falling transient portion of the sensor 

response using an exponential moving average filter (emaα) that converts the 

transient portion into a real scalar by estimating the maximum/minimum value 

y[k]=(1-α)y[k-1]+α(x[k]-x[k-1]), where [k=1,2,...,T], y[0] its initial condition, set to 

zero (y[0]=0), and the scalar α (α∈{0,1}) being a smoothing parameter of the 

operator such as was defined in (MUEZZINOGLU et al., 2009; VERGARA et al., 

2012). We tested three different values for α=0.1, α=0.01, and α=0.001; but it was 

chosen the max emaα with α=0.01 as an informative transient feature and his 

relative position. 

 

4.4 Classification methods 

Different models were generated using the Python programming language. 

An SVM algorithm available in the scikit-learn library was used, with the following 
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parameters to optimize the model: A Radial Bayes Function (RBF) as the kernel, 

the regularization parameter C as 10, and the other settings as the default value. 

The second architecture corresponds to a simple Deep MLP model with only fully 

connected layers based on the model used in (RODRIGUEZ GAMBOA, Juan C.; 

ALBARRACIN E., Eva Susana; SILVA, Adenilton J. Da; et al., 2019). The 

configuration of the MLP model consists of eight layers with Tanh as the activation 

function except for the output layer, in which we used softmax. The input layer has 

100 neurons, and all the hidden layers have 30 neurons. Other three DL 

architecture implementation types were used for the classification tasks based on 

(RODRIGUEZ GAMBOA, Juan C et al., 2021), called Sniff ConvNet, Sniff ResNet, 

and Sniff Multinose.  

 

4.4.1 Training Configurations 

The three sets of DL models were trained to reach 20 epochs using the 

Stochastic Gradient Descent (SGD) algorithm for optimization with a learning rate 

of 0.001 and a momentum of 0.9. Besides, we used the categorical cross-entropy 

loss function.  

Regarding the training process in all tested classification methods, all 

datasets were split as follows, the training group including 20% of measurements 

and the validation group with 80%.  

 

4.5 Discrete Wavelet Transform 

The wavelet analysis has been applied to problems that including noise 

removal in signals. Due to its better time-frequency resolution, it overcomes other 

classical methods, such as short time Fourier Transform, for instance. One of the 

advantages when using wavelets is the computational efficiency of Mallat’s 

pyramidal algorithm. This algorithm is indeed a two-channel filter bank that splits 

the input signal into low and high frequencies using quadrature mirror filters 
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(OLIVEIRA, DE et al., 2018). Wavelet analysis proves effectively analyzing the 

distorted signals in time-frequency domain, and it can be described 

mathematically as follows as defined in (GAROUSI; SHAKARAMI; NAMDARI, 

2016). 

 
𝑓(𝑥) = ∑ 𝑎𝑖,𝑗𝜓𝑖,𝑗(𝑥)𝑖𝑗 . (4-2) 

where i and j represent the integer values and 𝜓𝑖,𝑗(𝑥) stands for wavelet 

expansion functions. 𝑎𝑖𝑗 Stands for the two coefficients of discrete wavelet 

transform (DWT) of  𝑓(𝑥). These coefficients have the formula: 

 
𝑎𝑖,𝑗 = ∫ 𝑓(𝑥)𝜓𝑖,𝑗(𝑥)

+∞

−∞

 

 

(4-3) 

where 𝜓i,j(x) represent the mother wavelet and can gain its parameters 

through: 

 𝜓𝑖,𝑗(𝑥) = 2
−𝑖

2⁄ 𝜓(2−𝑗𝑥 − 𝑗) 

 
(4-4) 

where i represent the scaling parameter in wavelet and j for the translation 

one. For multiresolution satisfaction, the difference of two scale equation is given 

as: 

 𝜙(x) = √2 ∑ h(k)𝜙(2x − k)

k

 

 

(4-5) 

 

where ℎ(𝑘) gives the wavelet function a unique value by satisfying wavelet 

conditions and 𝜙(𝑥) is scaling function, which has a relation with the mother of 

wavelet as follows: 

 𝜓(𝑥) = √2 ∑ 𝑔(𝑘)𝜙(2𝑥 − 𝑘) 

𝑘

 

 

(4-6) 

where h in (4-5) and g in (4-6) can be considered filters of wavelet of low-

pass filter and high pass filter. From all the above equation, the j wavelet value 

can be determined as: 
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𝑓0(𝑥) = ∑ 𝑎0,𝑘𝜙0,𝑘(𝑘) = ∑ 𝑎𝐽+1,𝑘𝜙𝐽+1,𝑘(𝑥)

𝑘𝑘

+ ∑ 𝑑𝑗+1,𝑘𝜓𝑗+1,𝑘(𝑥)

𝐽

𝑗=0

 

 

(4-7) 

where 𝑎0,𝑘, 𝑎𝐽+1,𝑘, 𝑑𝑗+1,𝑘 are the coefficients at scale j+1 and can be determined 

under the condition of the availability of scale j as follow:  

 𝑎𝑗+1,𝑛 = ∑ 𝑎𝑗,𝑘ℎ(𝑘 − 2𝑛)   

𝑘

 

 

(4-8) 

 

 𝑑𝑗+1,𝑛 = ∑ 𝑎𝑗,𝑘𝑔(𝑘 − 2𝑛) 

𝑘

 

 

(4-9) 

where 𝑎𝑗+1,𝑛is the approximation coefficient and  𝑑𝑗+1,𝑛 is the detailed one 

at scale j+1 defined. 
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5 RESULTS 

 

5.1 Exploratory analysis of the data 

It is plotted in the figures the measurements by gas existing in the 

database to pre-explore the University of California database, mentioned 

previously in this document in section 3.1. 

The figure shows the behavior of the response signals when Gas 1 is sensed. 

These data comprise the set of 8 characteristics listed in Table 6. In turn, the graph 

in the upper part includes the 2-D plot, and in the lower part, the 3-D plot of the 

characteristics presented in the database. 

In order to explore the database of the University of California, mentioned 

earlier in this document in section 3.1, the existing measurements by gas in this 

database are graphed in Figure 28 to Figure 33. Each measurement is expressed 

in a data matrix of 16 sensors by eight characteristics, which results in a 

multidimensional array of 128 columns by the number of measures (rows) reported 

for each gas class. 

The exploratory analysis begins with the Gas 1 measurements. A total of 

2565 measurements were reported for this gas. Therefore, the data matrix for this 

gas is an array that contains 128 columns (characteristics) by 2565 rows 

(measurements) with the values provided by the authors of the database. Panel A 

of Figure 28 shows the resulting 2-D plot for this kind of gas, and the 3-D plot is 

presented in Panel B of this same figure. This 3-D plot allows appreciating the 

magnitude of the reported values more clearly. It is identified that, in the first 

measurements, there is substantial contamination in the sensors caused by the 

high values of the first feature. This corresponds to the first of the features of the 

stable state of each sensor's response signal (resistance delta), which in the graph 

are observed as the peaks in yellow. It is identified that, for this gas, the sensors 
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that suffer the most remarkable saturation caused by these peaks in response to 

gas 1 are sensors 1, 2, 9, and 10. Given the above, it is inferred that Gas 1 saturates 

the aforementioned sensors to a greater extent. It is also observed that the sensors 

were contaminated by the operator, affecting the measurement process. 

Given the above, it is inferred that Gas 1 saturates the sensors mentioned 

above to a greater extent. It is also observed that the sensors were contaminated 

by the operator, affecting the measurement process. Additionally, in Panels C and 

D, the normalized data are presented, identifying outliers and measurements with 

an instrumental error. These factors affect the difficulty of achieving the 

classifier's prediction. Therefore, it is decided to remove them. 

Continuing the analysis, the response of the system when gas 2 is sensed 

is reported in Figure 29. The authors of the database reported 2926 measurements 

made with this gas. Similarly to that expressed for gas 1, the matrix of 

characteristics of this gas is made up of 128 columns with 2926 rows. It is observed 

in the 3D plot (panel B) that the sensors respond in a similar way to gas, with a 

difference of sensors 5, 6, 13, and 14 in which an almost null response is observed. 

There are also findings of outliers and deviations that affect the data identified in 

the yellow peaks in the 3D plots. Such deviations for this gas occur at the beginning 

and the end of the data collection. 

The gases sensed and represented in Figure 28 and Figure 29 correspond 

to Ammonia and Acetaldehyde in the concentrations reported in Table 2. 
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Figure 28 – Plot showing the measurements reported for gas 1. In panel A, the 2-D characteristics 

matrix of this class of gas is drawn. Panel B shows the feature matrix in 3D. Panel C shows a 

matrix of normalized 2D features, and Panel D presents a Matrix of normalized 3-D 

A) B) 

C) 

 

D) 

Source: Own 

Figure 29 – Plot showing the measurements reported for gas 2. In panel A, the 2-D characteristics 

matrix of this class of gas is drawn. Panel B shows the feature matrix in 3D. Panel C shows a 

matrix of normalized 2D features, and Panel D presents a Matrix of normalized 3-D 

A) 

 

B) 

 

C) 

 

D) 

 

Source: Own 
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Figure 30 represents the behavior of the response signals of the sensors 

when gas 3 is injected. In this case, the behavior of the sensors is similar to that 

reported for gas 2. However, there is a slight improvement in the response of 

sensors 5, 6, 13, and 14, unlike what is observed in the previous plot. Additionally, 

it can be seen in Figure 31 that for gas 4, the sensors that best respond to this gas 

are sensors 1, 2, 9, and 10. For their part, sensors 3, 4, 7, 8, 11, 12, 15, and 16 

provide an acceptable response, while sensors 5, 6, 13, and 14 show almost zero 

behavior with respect to the other sensors. Again, the peaks reflected in the 3D 

plots are identified for the two figures cited in this paragraph.  

In this case, the gases reported in Figure 30 and Figure 31 corresponds to 

Acetone and Ethylene in the concentrations expressed in Table 3. 

Figure 30 – Plot showing the measurements reported for gas 3. In panel A, the 2-D characteristics 

matrix of this class of gas is drawn. Panel B shows the feature matrix in 3D. Panel C shows a 

matrix of normalized 2D features, and Panel D presents a Matrix of normalized 3-D 

 

A) 

 

B) 

 

C) 

 

D) 

 

Source: Own 
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Figure 31 – Plot showing the measurements reported for gas 4. In panel A, the 2-D characteristics 

matrix of this class of gas is drawn. Panel B shows the feature matrix in 3D. Panel C shows a 

matrix of normalized 2D features, and Panel D presents a Matrix of normalized 3-D 

A) 

 

B) 

 

C) 

 

D) 

 

Source: Own 

Figure 32 – Plot showing the measurements reported for gas 5. In panel A, the 2-D characteristics 

matrix of this class of gas is drawn. Panel B shows the feature matrix in 3D. Panel C shows a 

matrix of normalized 2D features, and Panel D presents a Matrix of normalized 3-D 

A) 

 

B) 

 

C) 

 

D) 

 

Source: Own 
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Figure 33 – Plot showing the measurements reported for gas 6. In panel A, the 2-D characteristics 

matrix of this class of gas is drawn. Panel B shows the feature matrix in 3D. Panel C shows a 

matrix of normalized 2D features, and Panel D presents a Matrix of normalized 3-D 

A) 

 

B) 

 

C) 

 

D) 

 

Source: Own 

 

Finally, Figure 32 and Figure 33 show the measurements corresponding to 

gases 5 and 6, which are equivalent to Ethanol and Toluene in the concentrations 

referenced in Table 3. In this case, the sensors that best respond to Ethanol are 

sensors 1, 2, 9, and 10 of the array sensors. For its part, an acceptable response is 

identified from sensors 3, 4, 7, 8, 11, 12, 15, and 16. Regarding Toluene, a behavior 

of the sensors similar to that reported for Ethanol is identified. 

 

5.2 Obtain a Multiresolution Analysis (MRA) of the data using the SYM4 

Wavelet 

 

It performed a wavelet decomposition at level 8 using the ' sym4 ' wavelet. 

For this, it has chosen a wavelet and a level of decomposition 8, and then it 

computed the wavelet decompositions of the signals at level 8. Plot details Gas 1- 

Sensor 1 (ch 1). The presence of high and low frequencies in the decomposition is 
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evidenced, indicating noise and drift, respectively. Figure 34 and Figure 35 depict 

the MRA details of the response signals to Gas 1. For the analysis, the first 

characteristic of Sensor 1 is chosen because it corresponds to the resistance delta 

of the sensor. 

Figure 34 – MRA decomposition of the first feature in the gas 1 response signals in the first 

sensor. 

 

 

Source: Own 
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Figure 35 – MRA decomposition of the second feature in the gas 1 response signals in the first 

sensor 

 

 

Source: Own 
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To complete the analysis, Figure 36 shows the MRA of the signals 

corresponding to Gas 1. The presence of low frequencies in the signal is observed, 

which implies the presence of drifts introduced in the data 

 

Figure 36 – MRA decomposition of the full set of characteristics in the response signals of gas 1 at 

the first sensor 

 

Source: Own 

 

Finally, to carry out a more subtle simplification, the multisignal denoising 

is carried out. The denoising procedure carried out is summarized below: 

1) Decomposition: a wavelet is chosen, and a level of decomposition N, and 

then is computed the wavelet decompositions of the signals at level N. 

2) Thresholding: For each level from 1 to N, and each signal, a threshold is 

selected, and thresholding is applied to the detail coefficients. 

3) Reconstruction: wavelet reconstructions are computed using the original 

approximation coefficients of level N and the modified detail coefficients of 1 to N 

levels. 

Let us now choose the level of decomposition N = 5 instead of N = 7 used 

previously. 
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Figure 37 – Multisignal denoising of Gas 1 

 

Source: Own 

 

Observing the resulting residual noise in the signals allows inferring large 

amounts of noise in the data, as shown in Figure 37. Consequently, the presence 

of these large amounts of noise and associated drifts and the existence of outliers 

make this database a difficult to treat and forecast data set. The prediction does 

not depend solely on the drift problem, but there is also the implicit instrumental 

and operational failure of the system and an exaggerated number of samples and 

gas concentrations in short periods of time. Given the above, it is difficult to predict 

drifts' behavior in this database when there are multiple factors associated with 

the deviation of the sensor response. 

 

5.3 Time-dependent sample entropy 

This section presents the analysis performed on the University of 

California database using time-dependent entropy, given the data's non-

stationarity conditions. Time-dependent entropy is a useful method for analyzing 

non-stationary series, which corresponds to the quantification of the irregularity 

in the series at different time scales, according to the sliding window protocol. This 

method examines the entropy values from a time evolution perspective, allowing 
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the application of this technique in non-stationary conditions since the series are 

analyzed by segments. 

It is employed time-dependent SampEn statistics in overlapping sliding 

windows to analyze the temporal evolution of regularity of sensors responses 

series.  

Figure 38 to Figure 43 show the results obtained for the standard values 

window size w = 150 and τ=2, m=2 and r=0.2 applied to the sensor response series 

of the University of California data. The vertical lines in each of the figures indicate 

the divisions by batch according to the organization of the data reported in Table 

5. 

It is seen from Figure 38, Figure 40, and Figure 41 that the entropy values 

increase after the third batch, indicating changes in sensor response. These 

substantial changes in the sensor response signals generated by strong 

contamination of the sensors, indicating the increase in the degree of difficulty for 

classification given that the behavior of the series is significantly different in the 

initial portion of the data (Batch 1, 2, and 3) that are used for training. 

 

Figure 39 and Figure 42 show an incremental entropy behavior from 

batches 6 and 7. Finally, in Figure 43, it is observed that the highest values of 

entropy occur from batch 6 onwards. Note that for gas F, no measurements were 

made in batch 3, 4, and 5. 

In this analysis of the time-dependent entropy statistics values, it is found 

that the entropy increased in the batches in which a greater number of 

measurements of each of the sensed gases in this database (see Table 3). Therefore, 

the batches with the highest number of measurements show the highest values of 

entropy proportionally. This distribution of the number of measurements carried 

out per batch causes strong contamination of the sensors, directly associated with 

drifts. Therefore, it is inferred that entropy is an appropriate indicator to establish 

drift levels in the data. 
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Finally, in Figure 44 the experiments carried out with windows of different 

sizes (w=120, w=150, and w=200) used to compare the performance of entropy at 

different window sizes are plotted, allowing to choose the window of 150 

parameters used in Figure 38 to Figure 43. 

 

 

Figure 38 – Time-dependent SampEn statistics Gas 1 (w=150). The 16-time series are presented 

for each of the sensors. Each color represents the time-dependent entropy values of each of the 

time series of the responses of each of the 16 sensors 

 

Source: Own 

 

Figure 39 – Time-dependent SampEn statistics Gas 2 (w=150). The 16-time series are presented 

for each of the sensors. Each color represents the time-dependent entropy values of each of the 

time series of the responses of each of the 16 sensors 

 

Source: Own 
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Figure 40 – Time-dependent SampEn statistics Gas 3 (w=150). The 16-time series are presented 

for each of the sensors. Each color represents the time-dependent entropy values of each of the 

time series of the responses of each of the 16 sensors 

 

Source: Own 

 

 

Figure 41 – Time-dependent SampEn statistics Gas 4 (w=150). The 16-time series are presented 

for each of the sensors. Each color represents the time-dependent entropy values of each of the 

time series of the responses of each of the 16 sensors 

 

Source: Own 
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Figure 42 – Time-dependent SampEn statistics Gas 5 (w=150). The 16-time series are presented 

for each of the sensors. Each color represents the time-dependent entropy values of each of the 

time series of the responses of each of the 16 sensors. 

 

Source: Own 

 

 

Figure 43 – Time-dependent SampEn statistics Gas 6 (w=150). The 16-time series are presented 

for each of the sensors. Each color represents the time-dependent entropy values of each of the 

time series of the responses of each of the 16 sensors 

 

 

Source: Own 

 

 



79 

 

Figure 44 – Sliding windows time-dependent sample entropy (w=120, 150, and 200), gases one to 

six. Each color represents the time-dependent entropy values of each of the time series of the 

responses of each of the 16 sensors 

W=120 W=150 W=200 
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Source: Own 

 

To extend the results obtained so far, we also calculated the mean values 

and the standard deviation of the time-dependent sample entropy at w = 150 for 

each of the eight characteristics of the response signals from the 16 sensors. In this 

case, there is no discrimination by the gas class. The results presented in Table 10 

and Table 11 allow us to conclude that the characteristics that reflect greater 

entropy are 5 and 8, which correspond to the characteristics 𝑚𝑎𝑥𝑘 𝑒𝑚𝑎𝛼=0.1(𝑟[𝑘]) 

and 𝑚𝑖𝑛𝑘 𝑒𝑚𝑎𝛼=0.1(𝑟[𝑘]) of the transient portion stated in Table 6. 

Table 10 – Mean values of time-dependent entropy with w = 150. The lines indicate the sensor 

and the columns correspond to each of the 8 characteristics reported in the database. 

 
V1 V2 V3 V4 V5 V6 V7 V8 

1 0.703142 0.533181 0.601553 0.647526 0.934113 0.57885 0.725241 1.064504 

2 0.450273 0.409921 0.461482 0.499588 0.741055 0.447424 0.580043 0.963464 

3 0.412897 0.402405 0.414641 0.449188 0.747394 0.418729 0.494259 0.886342 

4 0.410866 0.4147 0.408238 0.45382 0.728227 0.414047 0.486605 0.895956 

5 0.375759 0.395468 0.417259 0.550298 1.332696 0.409296 0.612693 1.453507 

6 0.374427 0.423794 0.409276 0.557587 1.342078 0.410209 0.679574 1.500408 

7 0.418979 0.394787 0.410029 0.465122 0.638835 0.409716 0.516399 0.858794 

8 0.439982 0.412457 0.417168 0.457003 0.676756 0.428982 0.534808 0.905792 

9 0.472879 0.389012 0.410695 0.461023 0.748409 0.412936 0.538867 0.940602 

10 0.469484 0.391389 0.410923 0.443956 0.78856 0.417075 0.515061 0.960708 

11 0.419265 0.386878 0.409807 0.450152 0.73429 0.413794 0.482391 0.888017 

12 0.414706 0.398863 0.40165 0.455779 0.753308 0.414641 0.465935 0.885615 

13 0.382689 0.411019 0.417532 0.497987 1.028584 0.420601 0.541611 1.328539 

14 0.388184 0.411694 0.417933 0.498233 1.056212 0.42421 0.535794 1.319615 

15 0.4138 0.401586 0.435339 0.453908 0.631544 0.432649 0.516006 0.815572 

16 0.403214 0.389952 0.43126 0.464553 0.612331 0.416717 0.488135 0.803905 

Source: Own 
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Table 11 – Standard deviation values of time-dependent entropy with w = 150. The lines indicate 

the sensor and the columns correspond to each of the 8 characteristics reported in the database 

 
V1 V2 V3 V4 V5 V6 V7 V8 

1 0.613936 0.444787 0.532043 0.551232 0.573806 0.508866 0.548903 0.529923 

2 0.372422 0.296939 0.381723 0.398833 0.431983 0.366787 0.426379 0.474078 

3 0.331177 0.305335 0.335114 0.316677 0.455466 0.353924 0.413188 0.516662 

4 0.323324 0.310676 0.336978 0.331388 0.415183 0.363607 0.397063 0.519527 

5 0.309485 0.281802 0.383457 0.431214 0.695145 0.393976 0.432806 0.59271 

6 0.305453 0.305317 0.317352 0.41407 0.718907 0.342549 0.469897 0.59689 

7 0.334876 0.28612 0.327939 0.351257 0.399485 0.368091 0.434231 0.506667 

8 0.374827 0.302314 0.319172 0.346504 0.44796 0.391255 0.422069 0.514509 

9 0.422121 0.290138 0.357744 0.368707 0.430851 0.339165 0.403341 0.451341 

10 0.411187 0.292518 0.356917 0.374436 0.455695 0.360406 0.387542 0.478234 

11 0.326112 0.286676 0.344678 0.344237 0.442025 0.34293 0.388702 0.471782 

12 0.322691 0.292132 0.350797 0.358167 0.462083 0.36235 0.381991 0.484809 

13 0.31556 0.292599 0.342813 0.407702 0.601938 0.353632 0.421199 0.616405 

14 0.296277 0.296396 0.353372 0.40225 0.642161 0.376216 0.393705 0.630479 

15 0.323979 0.27901 0.343234 0.371028 0.408027 0.364651 0.426676 0.44122 

16 0.317279 0.275668 0.353437 0.375903 0.388029 0.383684 0.397775 0.446237 

Source: Own 

 

5.4 Rapid Detection Method for E-Nose using Synthetic Data 

As explained in section 4.3, the work scenarios generated with the 

chemosensors package were tested to analyze the classifiers' performance applying 

the traditional approach versus the rapid detection approach over data with and 

without drift.  

The traditional approach uses the entire response curves, implementing 

preprocessing techniques to extract the features and later data processing. 

Moreover, the rapid detection approach is based on processing an early portion of 

raw signals and a rising window protocol. The following tables summarized the 

experiments performed to achieve results.  

Based on the experimental results, there are some exciting things to 

remark:  

1. As expected, all classifiers made good forecasts in the first scenario 

(without noise and drift). 
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2. All classifiers worked well in the fourth scenario, datasets 4A, 4B, and 

4C (with noise and without drift), meaning that the noise can be treated without 

problem. 

3. Although the second scenario seems to be more complex because it 

includes noise and drift, the results suggest that the third scenario (without noise 

and with drift) turned out to be more challenging.   

4. SVM outperformed the performance compared against the other 

classifiers, followed by the Sniff Resnet model, which dealt well with the more 

challenging scenario. 

5. The results let us infer that the models generated using the rapid 

detection approach dealt very well under the work scenarios, with the advantage 

of lets to achieve faster results using only an early portion of the signals. 

 

Table 12 – Classification accuracy rates using SVM to compare the conventional and the rapid 

detection approach over the synthetic database. FS: Feature Selection pre-processing. W1: 

Window1, W2: Window2, …, W10: Window10. Scenarios as described in Section 4.3 

Scenarios Task FS W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

1 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2A 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.95 0.93 0.92 0.91 

2B 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.95 0.95 0.95 0.95 0.96 0.95 0.93 0.92 0.90 0.85 0.81 

2C 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 

Valid 0.96 0.93 0.94 0.92 0.91 0.89 0.87 0.84 0.76 0.69 0.67 

3A 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.96 0.91 0.84 0.80 0.77 0.74 0.76 0.80 0.80 0.79 0.78 

3B 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.94 0.93 0.78 0.74 0.74 0.72 0.72 0.70 0.68 0.68 0.68 

3C 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.94 0.90 0.76 0.72 0.69 0.68 0.66 0.64 0.65 0.67 0.66 

4A 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 1.00 1.00 1.00 0.99 0.95 0.94 0.93 0.93 0.93 0.93 0.93 

4B 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.97 0.97 0.98 0.94 0.94 0.93 0.92 0.92 0.92 0.92 0.92 



83 

 

4C 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.98 0.99 0.97 0.94 0.91 0.96 0.94 0.94 0.94 0.94 0.94 

Source: Own 

 

Table 13 – Classification accuracy rates using MLP to compare the conventional and the rapid 

detection approach over the synthetic database. FS: Feature Selection pre-processing. W1: 

Window1, W2: Window2, …, W10: Window10. Scenarios as described in Section 4.3 

Scenarios Task FS W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

1 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2A 
Train 0.83 0.76 0.76 0.85 0.80 0.96 0.76 0.80 0.76 0.99 0.87 

Valid 0.73 0.60 0.63 0.72 0.53 0.80 0.67 0.60 0.63 0.67 0.66 

2B 
Train 0.86 0.85 0.70 0.68 0.75 0.70 0.80 0.76 0.87 0.70 0.83 

Valid 0.70 0.60 0.47 0.57 0.53 0.47 0.60 0.54 0.58 0.53 0.59 

2C 
Train 0.87 0.70 0.61 0.70 0.68 0.72 0.69 0.94 0.76 0.70 0.68 

Valid 0.62 0.55 0.53 0.53 0.43 0.44 0.56 0.69 0.59 0.43 0.54 

3A 
Train 0.85 0.97 0.99 0.82 0.80 0.90 0.96 1.00 0.86 0.90 0.93 

Valid 0.77 0.60 0.52 0.53 0.51 0.46 0.59 0.74 0.53 0.59 0.60 

3B 
Train 0.65 0.63 0.85 0.75 0.77 0.80 0.92 0.75 0.83 0.79 0.92 

Valid 0.48 0.46 0.48 0.57 0.53 0.51 0.62 0.58 0.68 0.59 0.63 

3C 
Train 0.70 0.69 0.66 0.79 0.58 0.90 0.83 0.76 0.77 0.76 0.69 

Valid 0.57 0.41 0.38 0.51 0.32 0.63 0.50 0.58 0.60 0.63 0.43 

4A 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

4B 
Train 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.64 0.92 0.99 0.99 0.96 0.97 0.98 0.97 1.00 0.92 0.93 

4C 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 1.00 0.97 0.98 1.00 0.86 1.00 0.93 1.00 1.00 1.00 1.00 

 Source: Own 

 

Table 14 – Classification accuracy rates using Sniff ConvNet to compare the conventional and the 

rapid detection approach over the synthetic database. FS: Feature Selection pre-processing. W1: 

Window1, W2: Window2, …, W10: Window10. Scenarios as described in Section 4.3 

Scenarios Task FS W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

1 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 1.00 

Valid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.66 1.00 

2A 
Train 1.00 0.96 0.99 0.89 0.92 0.90 0.92 0.54 0.99 0.89 0.86 

Valid 0.96 0.63 0.95 0.64 0.58 0.68 0.82 0.56 0.71 0.69 0.59 

2B 
Train 0.89 0.70 0.86 0.93 0.80 0.66 0.87 0.76 0.69 0.90 0.72 

Valid 0.82 0.48 0.56 0.72 0.62 0.47 0.70 0.53 0.56 0.66 0.55 
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2C 
Train 0.90 0.93 0.75 0.82 0.80 0.89 0.80 0.87 0.90 0.77 0.83 

Valid 0.76 0.66 0.50 0.64 0.51 0.69 0.59 0.68 0.60 0.62 0.68 

3A 
Train 0.99 0.87 0.87 1.00 0.90 0.75 0.94 0.92 0.87 0.97 0.94 

Valid 0.90 0.55 0.48 0.60 0.50 0.69 0.63 0.46 0.52 0.60 0.60 

3B 
Train 0.96 0.83 0.83 1.00 0.70 0.86 0.77 0.70 0.82 0.90 0.70 

Valid 0.92 0.45 0.49 0.59 0.38 0.42 0.45 0.35 0.44 0.50 0.39 

3C 
Train 0.90 0.85 0.72 0.97 0.87 0.96 0.85 0.87 0.87 0.80 0.92 

Valid 0.87 0.53 0.43 0.52 0.38 0.67 0.52 0.43 0.54 0.41 0.38 

4A 
Train 1.00 1.00 1.00 0.73 0.82 1.00 0.83 1.00 1.00 1.00 1.00 

Valid 0.90 1.00 1.00 0.99 0.85 1.00 0.99 1.00 1.00 1.00 1.00 

4B 
Train 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.94 1.00 

Valid 0.99 0.99 1.00 1.00 0.98 0.99 0.88 0.99 0.95 0.96 1.00 

4C 
Train 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.62 

Valid 0.96 0.98 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.68 

Source: Own 

 

Table 15 – Classification accuracy rates using Sniff Resnet to compare the conventional and the 

rapid detection approach over the synthetic database. FS: Feature Selection pre-processing. W1: 

Window1, W2: Window2, …, W10: Window10. Scenarios as described in Section 4.3 

Scenarios Task FS W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

1 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2A 
Train 0.97 0.99 0.94 1.00 0.79 1.00 1.00 1.00 0.62 0.86 1.00 

Valid 0.83 0.84 0.67 0.97 0.61 0.83 0.92 0.88 0.49 0.58 0.78 

2B 
Train 0.92 1.00 0.86 1.00 0.94 0.99 0.87 0.89 0.89 1.00 0.96 

Valid 0.81 0.80 0.74 0.78 0.86 0.79 0.75 0.72 0.65 0.93 0.76 

2C 
Train 1.00 0.97 1.00 0.76 0.96 0.94 0.97 0.82 0.82 0.75 0.69 

Valid 0.84 0.88 0.81 0.59 0.65 0.92 0.67 0.59 0.59 0.49 0.52 

3A 
Train 0.99 1.00 0.97 1.00 0.99 0.97 0.99 0.94 0.99 0.96 0.89 

Valid 0.95 0.65 0.65 0.65 0.74 0.53 0.54 0.60 0.70 0.62 0.52 

3B 
Train 0.94 1.00 1.00 0.97 1.00 1.00 0.89 0.58 0.85 0.89 0.94 

Valid 0.81 0.81 0.62 0.64 0.61 0.80 0.62 0.41 0.52 0.56 0.69 

3C 
Train 0.79 0.97 0.99 1.00 0.99 0.96 1.00 0.96 0.87 0.90 0.97 

Valid 0.57 0.47 0.73 0.82 0.53 0.59 0.59 0.61 0.59 0.67 0.54 

4A 
Train 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.76 1.00 

Valid 0.99 1.00 1.00 1.00 0.83 1.00 0.98 0.92 1.00 0.79 0.98 

4B 
Train 0.94 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.99 

Valid 0.91 1.00 0.95 0.99 0.96 0.99 0.92 0.85 0.81 0.71 0.85 

4C 
Train 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.79 0.99 0.87 

Valid 0.91 0.99 0.99 0.96 0.75 0.99 0.96 0.97 0.57 0.79 0.86 

Source: Own 
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Table 16 – Classification accuracy rates using Sniff Multinose to compare the conventional and 

the rapid detection approach over the synthetic database. FS: Feature Selection pre-processing. 

W1: Window1, W2: Window2, …, W10: Window10. Scenarios as described in Section 4.3 

Scenarios Task FS W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

1 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2A 
Train 1.00 0.94 0.86 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 

Valid 0.98 0.71 0.58 0.66 0.69 0.66 0.82 0.67 0.68 0.73 0.76 

2B 
Train 0.90 0.66 0.83 0.87 0.93 0.96 0.94 0.99 0.90 0.97 0.96 

Valid 0.85 0.39 0.50 0.46 0.48 0.54 0.66 0.66 0.65 0.65 0.61 

2C 
Train 0.93 0.65 0.77 0.72 0.82 0.85 0.93 0.93 0.90 0.90 0.89 

Valid 0.74 0.35 0.41 0.38 0.48 0.45 0.57 0.55 0.61 0.57 0.54 

3A 
Train 0.99 0.97 1.00 0.92 0.99 1.00 0.99 0.99 1.00 1.00 1.00 

Valid 0.97 0.63 0.60 0.42 0.48 0.61 0.58 0.66 0.60 0.66 0.66 

3B 
Train 0.83 0.80 0.85 0.92 0.96 0.93 0.96 0.99 0.94 0.96 0.99 

Valid 0.67 0.54 0.50 0.60 0.46 0.43 0.57 0.63 0.62 0.60 0.58 

3C 
Train 0.96 0.76 0.79 0.94 0.92 0.94 0.93 0.93 0.97 0.89 0.89 

Valid 0.88 0.36 0.40 0.44 0.41 0.40 0.49 0.59 0.47 0.63 0.58 

4A 
Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

4B 
Train 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.91 0.97 0.99 0.97 0.98 0.94 0.97 0.92 1.00 1.00 0.98 

4C 
Train 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valid 0.84 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

 Source: Own 
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7 CONCLUSION 

 

During the doctoral studies, it was developed an E-Nose system. That 

device was used to obtain a database to detect wine spoilage thresholds, using an 

array of six metal-oxide-semiconductor (MOS) gas sensors. Using this database, 

we proposed a novel approach for the electronic nose systems, treating an early 

portion of the raw signals (while the measurement process is still running and 

without applying preprocessing techniques.) The proposed methodology focused on 

reducing the necessary time for making the forecast, accelerating the response 

time. The mentioned approach achieved excellent results against the traditional 

methodology. The database is available1. 

The time dependent SampEn statistic in overlapping sliding windows, used 

to analyze the temporal evolution of the regularity of the series of responses from 

the sensors, is a consistent statistic to analyze drift conditions in databases of E-

Nose systems. The coincidence was identified between the increase in the entropy 

value and the increase in the sensors' contamination caused by their saturation in 

carrying out many consecutive measurements in short periods. This generates the 

sensors' poisoning, and entropy becomes an indicator of this poisoning that may 

not be noticeable to the operator. The quantification of this parameter makes it 

possible to generate a protocol for the distribution in time of the measurements 

made with an artificial smell system. Likewise, it was concluded that the forecast 

fails does not depend solely on the drift problem, but there is also the implicit 

instrumental and operational failure of the system and an exaggerated number of 

samples and gas concentrations in short periods of time. Given the above, it is 

difficult to predict drifts' behavior in the University of California database when 

there are multiple factors associated with the deviation of the sensor response. 

 
1 https://data.mendeley.com/datasets/vpc887d53s/3 
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The results presented allow us to conclude that the characteristics that 

reflect greater entropy are the characteristics 𝑚𝑎𝑥𝑘 𝑒𝑚𝑎𝛼=0.1(𝑟[𝑘]) and 

𝑚𝑖𝑛𝑘 𝑒𝑚𝑎𝛼=0.1(𝑟[𝑘]) of the transient portion of the signal.  

Subsequently, we focused on validating if the rapid detection approach 

proposed for the electronic nose is suitable to be applied in diverse E-Nose 

scenarios with and without noise and drift. Consequently, the rapid detection 

approach could deal very well under drift and noise conditions based on the 

experimental results with the advantage of lets to achieve faster results using only 

an early portion of the signals against the traditional approach that needs the 

whole measurement information. Moreover, an interesting finding suggests that a 

drift scenario and without noise could be more complex against a scenario with 

drift and noise. Maybe parts of information are contained in the noise. Likewise, it 

was evidenced that the classifiers dealt well under noise conditions. SVM classifier 

outperformed the performance compared against the other classifiers, followed by 

the Sniff Resnet model that is competitive in the more challenging scenario (with 

drift and without noise). 

It is recommended as future work to propose a method to quantify drifts' 

effect based on the dynamic principles of entropy to establish a soft metrological 

scheme that quantifies the contamination of an E-Nose database, intending to 

determine rest times of the sensor instrument and/or sensors replacement by 

aging.  
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a b s t r a c t

We investigate regularity and asynchrony in Brazilian energy (ethanol) and agriculture
(sugar) market with focus on 2008 global economic crisis, using multiscale entropy
method. We applied this method on sugar and ethanol return series for different
temporal scales and in sliding windows to analyze temporal evolution of regularity
of price dynamics. The results show that for both ethanol and sugar return series the
entropy values increase after 2008 and 2012, indicating the increase of market efficiency
in post-crisis periods. During the crisis periods sugar and ethanol return series present
some deviations from the expected decreasing behavior for higher timescales, which is
more evident for the ethanol. Overall, higher entropy values are found for ethanol series
indicating less regularity and higher market efficiency in energy market.

© 2019 Published by Elsevier B.V.

1. Introduction

Sugarcane is the dominant raw material used in Brazil in the manufacture of sugar and ethanol, where plant residues
(bagasse, tops and leafs) are used for energy generation (steam and electricity for the production itself, as well as
surplus electricity) [1,2]. This agricultural product has proved valuable for the country’s economy because its derivatives,
crystal sugar and hydrated ethanol, represent two of the leading commodities traded on the stock market. Brazil has
been recognized as the largest producer of sugarcane in the world for several years [3], however, the country faces
various socioeconomic and environmental issues related to sugarcane expansion: displacement of extensive livestock and
soybeans production to remote areas (mostly to the border of Amazon region) which leads to additional deforestation,
increased land-market dynamics — merging of small properties into larger units (more feasible for large-scale sugarcane
production) which is accompanied by use of heavy agricultural machinery, and management practices that lead to
soil erosion and degradation of soil physical properties [4,5]. One consequence of sugarcane burning is the increased
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concentration of aerosol particles which can cause serious health problems for local population. Finally, as most of
sugarcane in Brazil today is still harvested manually, improvement of working conditions for sugarcane cutters is a
big challenge for sugarcane employers and Brazilian Ministry of Labor [4]. All these concerns are directly related to the
increase in ethanol production and its competition with sugar production, making the two markets highly interconnected,
being both influenced by global factors (crude oil prices) and specific local features of Brazilian economic development,
including government policies and technological advances such as flex plants which can adjust production of these
commodities depending on their relative prices. The relation between Brazilian ethanol and sugar market was studied
using econometric methods [6–11], however the emerging methods from complex system science can reveal some new
aspects of the nature of the stochastic processes that generate financial temporal series [12–17]. The objective of this work
is to investigate the temporal variability of ethanol and sugar prices, employing entropy, a classical concept of information
theory widely used to quantify disorder and uncertainty of dynamic systems [18]. Thus, we use multiscale sample entropy,
time-dependent sample entropy, and cross-sample entropy [19,20] for analyzing the influence of the economic recession
on these time series, particularly the subprime crisis (2008–2010) which was triggered since 2006 in the United States
with the bankruptcy of mortgage loans and strongly influenced the whole world stock markets [21]. The results show how
this approach can be used for analysis of financial time series, revealing their complexity or similarity, with the potential
of detecting economic recession.

The rest of this paper is organized as follows: Section 2 describes the data and the methods employed for the analysis
of entropy; Section 3 provides a comprehensive description of the empirical results, and Section 4 presents the discussions
and conclusions.

2. Materials and methods

2.1. Data

We analyze two time series with 875 observations of weekly prices of crystal sugar (in USD/50 kg) and hydrated
ethanol fuel (in USD/liter) [22]. These values correspond to the closing prices on Fridays of each week during the period
from July 7, 2000 to May 19, 2017.

The temporal series of sugar and ethanol prices are shown in Fig. 1(a) and (b), respectively, and their corresponding
series of returns calculated as Rt = ln (Pt/Pt−1) are shown in Fig. 1(c) and (d), where PS and PE correspond to the weekly
prices of crystal sugar and hydrated ethanol respectively, and RS and RE represent the corresponding return series.

The shaded area in Fig. 1 represents the period from mid-September 2008 to December 2010, when the US economy
fell into a severe recession influencing the behavior of these commodities (increased prices, higher returns and volatilities).
The increase of prices in the mid 2000s, was partly driven by a surge in US demand, followed with decrease due to collapse
in crude oil prices in the second half of 2008. Ethanol prices recovered in 2009 as a result of increased global demand
for sugar resulting in strong increases in sugar prices, which were passed on to ethanol prices, until the break of 2011,
after which the prices were back to the pre-crisis level [10,23]. We apply the entropy analysis to measure the diversity
of patterns contained in these time series to explore the emergence of substantial changes, particularly those associated
with significant events in market dynamics, in particular, before, during and after the economic crisis. In addition, we use
cross-sample entropy to analyze the behavior of the sugar versus ethanol markets.

2.2. Sample entropy

Sample entropy (SampEn) was introduced by Richman and Moorman [19] as a modification of the approximate entropy
(ApEn) [24], both methods were designed to analyze the dynamics of time series by evaluating its regularity and level
of complexity. A greater regularity (lower complexity) produces lower values of SampEn, whereas for a series with
higher complexity the value of SampEn statistic is higher. The applications of sample entropy include physiology [25,26],
geophysics [27] climatology [28], hydrology [29] and engineering [30]. The key advantages of SampEn in comparison with
ApEn are the independence of the amount of data and a relatively simple implementation, reasons for which we selected
it for the proposed analysis in this work, since the available dataset is not very large (weekly data).

SampEn (m, r, N) is defined as the negative natural logarithm of the conditional probability that two sequences of length
N, that are similar (within a tolerance level r) for m points, remain similar for m +1 points, where self-matches are not
included in calculating the probability. An algorithm for calculating sample entropy can be described as follows [19].
Given a time series of size N, X = x1, x2, . . . , xN , first N-m+1 vectors xm(i) of size m are constructed where xm(i)
= xi, xi+1, . . . , xi+m−1, and i = 1, . . . , N-m+1. The distance di,j between the vectors xm(i) and xm(j) is calculated as
di,j [xm(i), xm(j)] = max

{⏐⏐xi+k − xj+k
⏐⏐ : k = 0, . . . ,m − 1

}
, for each i = 1, . . . ,N − m and j = 2, . . . ,N − m + 1, where

i ̸= j and j > i to exclude self-matches. Subsequently, quantities Bm
i (r) =

Bi
N−m−1 and Am

i (r) =
Ai

N−m−1 are calculated,
where Bi is the number of vectors xm(j) of size m that are similar to vectors xm(i) within a tolerance r estimated from
di,j [xm(i), xm(j)] ≤ r , and Ai is the number of vectors xm+1(j) that are similar to vectors xm+1(i). From the individual Bm

i (r)
and Am

i (r) values, the corresponding mean values Bm (r) =
1

N−m

(∑N−m
i=1 Bm

i (r)
)

and Am (r) =
1

N−m

(∑N−m
i=1 Am

i (r)
)

are
now calculated, and finally the statistic called sample entropy expressed in (1) is obtained as

SampEn (m, r,N) = −ln
(
Am (r)
Bm (r)

)
. (1)
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Fig. 1. Time series of weekly prices for (a) sugar, (b) ethanol, and returns for (c) sugar, (d) ethanol.

2.3. Cross sample entropy

To determine the similarity of sugar and ethanol series, we use the statistic known as cross-sample entropy (Cross-
SampEn), which is based on SampEn [19]. While SampEn determines how many vectors in a time series of data occur
within a statistically significant range that can be defined as similarity, analysis of similarity of parallel sequences
in the two nonstationary time series is achieved using the Cross-SampEn cross-correlation method, which proceeds
as follows [19]. Given two simultaneous time series u = u1, u2, . . . , uN and v = v1, v2, . . . , vN of size N, first it
is necessary to configure the parameters m and r, the length of the vector to be compared and the tolerance to
accept the matches, respectively. Second the vectors xm (i) = [ui, ui+1, . . . , ui+m−1]: 1 ≤ i ≤ N − m + 1 and ym(j) =

[uj, uj+1, . . . , uj+m−1]: 1 ≤ j ≤ N−m+1}, are constructed for u and v. For each i ≤ N−m+1, we define Bm
i (r)(v||u ) =

Bi
N−m ,

where Bi is the number of vectors ym(j) within tolerance r from xm (i) : di,j [xm(i), ym(j)] ≤ r , with di,j [xm(i), ym(j)] =

max
{⏐⏐ui+k − vj+k

⏐⏐ : k = 0, . . . ,m − 1
}
is the maximum difference in their respective scalar components. Then we define

Bm(r)(v||u ) =

∑N−m
i=1 Bmi (r)(v||u )

N−m , where Bm(r) is the probability that two vectors (from two simultaneous series u and v)
will match for mpoints. We repeat this calculation for vectors of length m + 1 and define Am

i (r)(v||u ) =
Ai

N−m and

Am(r)(v||u ) =

∑N−m
i=1 Ami (r)(v||u )

N−m where Am(r) is the probability that two vectors (from two different series) will match for
m + 1points. Finally, Cross-SampEn is estimated as

Cross − SampEn (m, r,N) = −ln
(
Am(r)(v||u )
Bm(r)(v||u )

)
. (2)

Cross-sample entropy represents a conditional probability that sequences (from two different series) that are similar
(within certain tolerance level) over m consecutive data points will remain similar after addition of one consecutive data
point. Higher values of Cross-SampEn indicate less synchronization between analyzed temporal series [19]. Cross-SampEn
was used in analyzing physiological [31,32], geophysical [33], and financial data [34,35].

In practice, SampEn and Cross-SampEn are usually applied on standardized time series such as: u∗
=

ui−u
σu

, where
u and σu represent the mean and standard deviation of the time series, with values of r varying between 0.1–0.25, and
m = 1, 2, 3. For time series with length N between 100–5000 samples, m = 2 and r = 0.2 are the most common
parameters [19,36].
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Fig. 2. Moving average filter applied on the series of sugar returns (a) τ = 1, (b) τ = 5, (c) τ = 15 and (d) τ = 25. The shaded area represents the
period of crisis.

2.4. Multiscale sample entropy MSE

As entropy is scale dependent, a pattern may look less regular depending on the choice of timescale. In financial
temporal series this scale dependency exhibits short-term and long-term trends; fluctuations are more complex for
smaller timescales, while higher timescales are characterized by more regular fluctuations [37]. Therefore multiscale
entropy is frequently used to represent variability over a broad range of scales in time series [37–41]. The multiscale
entropy procedure consists in the application of the moving average filter, which removes high-frequency components,
generating a new series with different timescales τ [37,39,41], for which entropy is calculated using (1) and (2). The
following procedure is used to obtain the new filtered series. Given the time series X = x1, x2, . . . , xN , the moving-average
filter is applied to each timescale τ , obtaining a series Yτ =

1
τ

∑τ−1
j=0 xi+j, where i = 1, N- τ+1. Thus, Yτ holds the values

of X for each timescale greater than τ , or frequencies smaller than f =
1
τ
, removing short-term fluctuations at higher

values of τ , which effectively reduces the complexity of the time series. We applied the MSE method on return series of
sugar and ethanol for τ = 1, 2, 3, . . . , 26. Fig. 2 shows how the moving average filter, using τ = 1, 5, 15, 25, removes the
short-term fluctuations in the sugar returns series.

2.5. Time-dependent entropy

While standard statistical analysis of time series assumes their stationarity, this condition is not always met, in which
cases it is necessary to utilize procedures that adequate for nonstationary data series analysis. The time-dependent entropy
is one such method, corresponding to quantification of irregularity in the series at different scales, as a function of time,
based on the sliding window protocol. This method examines the entropy values from a perspective of temporal evolution,
allowing the application of this technique in nonstationary conditions since the series are analyzed by segments [39,41].
The method to calculate the time-dependent entropy is as follows. Given a series of data X = x1, x2, . . . , xN , the sliding
window protocol is defined as Xt = x1+t∆, . . . , xw+t∆, t = 0, 1, . . . ,

[N−w
∆

]
where w ≤ N is the window size, ∆ ≤ w is

the sliding step, and the operator [.] denotes taking integer part of the argument. The time series values in each window
Xt are used to compute the SampEnt,τ (m, r, w) and Cross − SampEnt,τ (m, r, w) at a given time t and scale τ .

3. Results and discussion

As described in Section 2.1, PS and PE represent data series containing the weekly prices of crystal sugar and hydrated
ethanol and RS and RE are the corresponding series of logarithmic returns. Considering 52 data per year, we set on the
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Fig. 3. Multiscale SampEn statistics for the series of returns of sugar and ethanol. (a) Before (b) during, and (c) after the crisis.

timescales τ = 1, 2, 3, . . . , 26, where τ = 4, τ = 13 and τ = 26 represent the intervals of one month, one quarter and one
semester, respectively. In addition, we configured the parameters r = 0.2 and m = 2 in the SampEn and Cross-SampEn
methods, as explained at the end of Section 2.3. To analyze the entropy dependence over time, we used overlapping
sliding windows with ∆ = 1 for window size w = 200 (about four years) and we attributed the resulting value to the
midpoint of the chronological time.

3.1. Multiscale sample entropy

To analyze the behavior of sugar and ethanol time series, these were divided into three periods: before, during and
after the global economic downturn, taking as the recession start the date the company Lehman Brothers bankruptcy
was officially established, in September 2008 [42]. Thus, we adopted September 12, 2008 as the date of the beginning
of the crisis, and as the date of the culmination of the downturn two years later, December 30, 2010, dividing the data
into three new subseries for prices PS and PE with size N = 426, N = 121 and N = 328, respectively. Fig. 3 shows the
multiscale sample entropy SampEn(τ ) for the series of returns Rs and RE for each of the analyzed periods. It is seen from
Fig. 3 that: (i) The behavior of SampEn(τ ) before the crisis is as may be generally expected, i.e., the entropy value decreases
as the timescale increases, in the long-run the time series looses pattern diversity and fluctuations become more regular
(Fig. 3(a)); (ii) During the crisis the SampEn(τ ) values of ethanol show an anomalous behavior for timescales higher than
one quarter since the entropy values increase indicating that in the long-run, the ethanol time series becomes less regular
and more complex and uncertain (Fig. 3(b)). Similar results were obtained by Martina et al. [41] for crude oil prices during
the period of Gulf war 1990. Finally, (iii) the SampEn(τ ) values after the recession exhibit a higher entropy (indicating
higher market efficiency) then before and during the crisis, and show a decreasing behavior, but non-monotonically,
Fig. 3(c).

3.2. Time dependent multiscale entropy

We also employed multiscale SampEn and Cross-SampEn statistics in overlapping sliding windows to analyze temporal
evolution of regularity and asynchrony of sugar and ethanol series. Fig. 4 shows the results obtained for window size
w = 200 and τ = 1, 5, 10. It is seen from Fig. 4(a) and (b) that the entropy values increase after 2008 and 2012 indicating
the increase of market efficiency after global and European crisis, respectively. This effect is more pronounced for sugar
series, having as a consequence the increase in cross-sample entropy values (increased asynchrony between two series)
in the same periods (Fig. 4(c)).

The heat map layout in Fig. 5 displays the outcomes obtained for returns with window size w = 200 and τ =

1, 2, . . . , 26. We observed at higher timescales, in both series higher entropy values occurring after the crisis, indicating
less regularity in return series and more efficient market. This effect is more evident in the period between 2012 and
2013, which is related to the economic crisis in Europe in 2012 [43]. Again this behavior is more pronounced for sugar
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Fig. 4. Time-dependent entropy of (a) sugar, (b) ethanol, and (c) cross-sample entropy between sugar and ethanol, for timescale τ = 1, 5,10 and
window size w = 200.

Fig. 5. Time-depended multiscale entropy for (a) sugar, (b) ethanol and (c) cross sample entropy between sugar and ethanol.

than for ethanol which also (for some timescales) shows the increase in entropy before and during the crises, indicating
that overall, ethanol series are less regular but also less responsive to effects of crisis.

It is well-known that for financial time series multiscale patterns tend to decrease monotonously with the timescale,
indicating that the long-term trend of the time series loses patterns diversity (i.e., becomes more regular) regarding the
short-term tendency as seen from heat maps of time depended multiscale entropy (Fig. 5). Following Martina et al. [41],
we display in Fig. 6 the multiscale patterns for the most affected years by economic depression (vertical lines in heat maps
in Fig. 5). In these years, the application of the SampEn method suggests that sugar and ethanol return series present some
deviations from the expected decreasing behavior, being more evident for the ethanol. That suggests that in the long-run,
the price fluctuations of this commodity do not gain regularity, become more uncertain since the diversity of patterns
(entropy) increases with the timescale. The entropy values for 2012 are higher than in other years, revealing the post-crisis
effect as well as the influence of economic crisis in Europe [43].

To support the results obtained so far, we also calculated the mean values and the standard deviation of time-
dependent multiscale sample entropy for each timescale, as shown on Fig. 7. Then, assuming independence between
both commodities and with 5% significance level, we performed the statistical comparison tests as shown below. (i) To
examine the normality conditions, we ran the Shapiro test, finding that the means did not fulfill the condition while the
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Fig. 6. Multiscale sample entropy of returns series: (a) sugar, (b) ethanol, and (c) cross-sample entropy between sugar and ethanol for one-year
periods mostly affected by economic crisis.

Fig. 7. Time dependent multiscale sample entropy: (a) mean values, (b) standard deviation values.

standard deviations satisfied the test. (ii) We conducted the Mann–Whitney–Wilcoxon test that revealed that there is no
enough evidence to say the mean values are different. (iii) For the standard deviation, we executed the T-test and the
results exhibited that their values are statistically different, being higher for sugar, indicating that for the sugar series
in different timescales there are periods of high entropy and periods of low entropy. It is seen from Fig. 7(a) that at
most timescales ethanol series exhibits higher entropy than sugar series which together with previous results (Figs. 3–6)
indicates that the ethanol series is more complex when compared to the sugar series, meaning less regularity in price
fluctuations of this commodity.

4. Conclusions

In this work we analyze complexity of temporal series of prices of ethanol and sugar which represent Brazilian energy
and agriculture market, with focus on influence of global economic crisis in 2008. These commodities are produced from
sugarcane and their production changes depending on their relative prices which can be influenced by various internal
(i.e governmental policies and demand/supply ratio) and external (i.e. oil prices and exchange rate) factors. We use well
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established methods sample entropy and cross-sample entropy which were designed to evaluate regularity of temporal
series and asynchrony between two temporal series. We applied these methods on sugar and ethanol return series for
different temporal scales to investigate short term and long term behavior, and in overlapping sliding windows to analyze
temporal evolution of regularity of price dynamics, and to detect the influence of economic crisis. The results show that
for both ethanol and sugar return series the entropy values increase after 2008 and 2012 indicating the increase of market
efficiency after global and European crisis, respectively. At higher timescales, in both series higher entropy values (less
regularity and higher market efficiency) also occurred after the crisis, with more evidence in the period between 2012
and 2013, which is related to the economic crisis in Europe in 2012. This behavior is more pronounced for sugar than for
ethanol. Analyzing entropy values for the years most affected by economic crisis we found that both sugar and ethanol
return series present some deviations from the expected decreasing behavior for higher timescales, which is more evident
for ethanol, indicating that in the long-run the price fluctuations of this commodity become more uncertain. By applying
appropriate statistical tests on time dependent multiscale entropy we compared mean values and standard deviations of
entropies of sugar and ethanol returns for different temporal scales using the values calculated in each sliding window.
While there is no statistical difference between mean values, although they are slightly higher for ethanol, standard
deviation values are statistically different, being higher for sugar. Overall, higher entropy values are found for ethanol
series indicating that the ethanol series is more complex when compared to the sugar series, meaning less regularity and
higher market efficiency in energy market.

Our work complements some recent results [37,41,44–48] that indicate that entropy is a promising measure to monitor
the evolution of financial variables (in this case ethanol and sugar prices) for different timescales, and could be useful to
identify different market phases, particularly those related to macroeconomic events such as financial crisis.
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A B S T R A C T

It is crucial for the wine industry to have methods like electronic nose systems (E-Noses) for real-time monitoring
thresholds of acetic acid in wines, preventing its spoilage or determining its quality. In this paper, we prove that
the portable and compact self-developed E-Nose, based on thin film semiconductor (SnO2) sensors and trained
with an approach that uses deep Multilayer Perceptron (MLP) neural network, can perform early detection of
wine spoilage thresholds in routine tasks of wine quality control. To obtain rapid and online detection, we
propose a method of rising-window focused on raw data processing to find an early portion of the sensor signals
with the best recognition performance. Our approach was compared with the conventional approach employed
in E-Noses for gas recognition that involves feature extraction and selection techniques for preprocessing data,
succeeded by a Support Vector Machine (SVM) classifier. The results evidence that is possible to classify three
wine spoilage levels in 2.7 s after the gas injection point, implying in a methodology 63 times faster than the
results obtained with the conventional approach in our experimental setup.

1. Introduction

Wine flavor depends on 20 or more compounds, besides water and
ethanol, that with subtle alterations in concentration determine its
quality (Jackson, 2008). The most important technique used to de-
termine wine quality is directly related to the organoleptic character-
istics evaluation by trained experts (Aleixandre, Cabellos, Arroyo, &
Horrillo, 2018; Cretin, Dubourdieu, & Marchal, 2018; Sáenz-Navajas
et al., 2015). Since the analytical panels are expensive, time-consuming,
and they are not always available, the wine is also characterized using
gas and liquid chromatography or spectrophotometry, that require on
reagents and experienced personnel (Martins et al., 2018; Perestrelo,
Rodriguez, & Câmara, 2017; Stupak, Kocourek, Kolouchova, &
Hajslova, 2017; Vazallo-Valleumbrocio, Medel-Marabolí, Peña-Neira,
López-Solís, & Obreque-Slier, 2017). Besides, E-Noses are used as an
alternative to traditional methods for wines discrimination regarding
the organoleptic characteristics. Their purpose is to analyze aroma
profiles by registering signals produced by the mixture of gases (as the
human nose does) and then comparing the pattern of responses

generated by different samples (Lozano, Santos, & Horrillo, 2016; Peris
& Escuder-Gilabert, 2016; Rodríguez-Méndez et al., 2016; Zhao et al.,
2017). However, most E-Noses are designed for general purpose, and
sometimes they are not portable to use on-site.

Volatile acidity (VA) measurements, generally interpreted as acetic
acid content (g∙l−1), are used routinely as an indicator of wine spoilage
(Zoecklein, Fugelsang, Gump, & Nury, 1995). Thereby, it is crucial for
the wine industry and consumers to have methods for real-time mon-
itoring of VA thresholds. There are previous works which the wine
spoilage was characterized using E-Noses developed with special sen-
sors or combined with other technologies and methods. Some common
characteristics of those systems are the instrumentation complexity,
most of them involve the use of additional equipment that requires
experienced personnel, and they do not realize online detection. For
instance, a metalloporphyrin based optoelectronic nose was developed
in Amamcharla & Panigrahi (2010) for the simultaneous prediction of
Volatile Organic Compounds (VOCs) concentrations in binary mixtures
(acetic acid and ethanol) using partial least square regression (PLSR)
and multilayer perceptron neural network (MLP-NN). Besides, in Gil-
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Sánchez et al. (2011), it is reported the wine spoilage analysis when in
contact with air using a combined system of a potentiometric electronic
tongue and a humid E-Nose.

The acetic acid detection was studied by Macías et al. (2012) using a
commercial E-Nose for general purpose, in combination with a neural
network classifier (MLP). They detected only the excessive concentra-
tions of acetic acid, equal to or greater than 2 g∙l−1 in synthetic wine
samples (aqueous ethanol solution at 10% v/v). However, levels higher
than 1.2 g l−1 of VA cause that the wine takes on vinegar aromas
(unpleasant), reducing its quality; hence the governments forbid their
commercialization (Normative instruction N° 14, 2018; Zoecklein et al.,
1995). Thus, our work was aimed to detect lower levels and with a
quick identification in real wine samples with several spoilage thresh-
olds using the self-developed E-Nose, without using any reagent to re-
duce the environmental impact, as well with a smooth and safe op-
eration interface (no occupational risk for the operator and with
minimal training).

This study presents the self-developed E-Nose based on commer-
cially available gas sensors for early detection of spoilage thresholds by
VA in routine tasks of wine quality control. We recorded electrical
signals corresponding to odorant profiles of wines samples with dif-
ferent spoilage levels.2 Afterward, we compared the conventional data
processing approach used in E-Noses against our online data processing
approach to accelerate the responses. In the conventional approach was
applied the preprocessing and feature extraction before an SVM clas-
sifier to obtain the main odorant parameters (which requires that the
measurement process had finished before the data processing stage). By
contrast, we focused on an online solution, that let to achieve faster
results, using an early portion of the signals while the measurement
process is still running. Our approach is based on the training of a deep
MLP classifier using the raw data.

2. Materials and methods

2.1. Electronic Nose

We used an E-Nose, that we named O-NOSE, comprising principally
of an array of six metal-oxide gas sensors (Table 1), used to detect the
volatile compounds. Fig. 1 shows O-NOSE on the left side, and the
sensors board with two layers for a compact design on the right side.

2.1.1. Experimental setup
In Fig. 2a, we depict the O-NOSE measurement process divided into

three stages. (i) Concentration stage: we used 1ml wine samples to
accumulate the volatiles for 30 s inside the concentration chamber. (ii)
Data acquisition: 10 s after the initialization of this stage, the VOCs
push toward the sensors chamber for 80 s generating change in the
sensor resistance (gas absorption). Subsequently, the gas injection
stops, and it begins the desorption for 90 s. Therefore, the acquired data
corresponds to 180 s with 18.5 Hz sample rate. (iii) Purge: the goal is to
clean and remove volatile residues for 600 s. Fig. 2b shows the standard
block diagram for the whole experiments, the electrical signals acquired
are processed using the pattern recognition techniques after finished
the data acquisition stage in the conventional approach or online ap-
plying our approach.

2.2. Data

2.2.1. Wine samples
We used 22 bottles of commercial wines, and to obtain spoiled

samples, 13 of the 22 bottles were randomly selected, opened and left in
an uncontrolled environment six months before starting the

measurements. These bottles were labeled as low-quality (LQ) wines.
Besides, another four bottles were opened two weeks before beginning
the data collection. These four bottles were labeled as average-quality
(AQ) wines, and the remaining five bottles were labeled as high-quality
(HQ) wines.

The 22 wine bottles were characterized as follows: (i) the VA
quantification was performed in triplicate according to official methods
for wine analysis of the International Organization of Vine and Wine
(OIV. International Organization of vine and wine, 2014). (ii) Acetic
acid was identified by High Performance Liquid Chromatography
(HPLC) with UV/Vis absorption detector, following the procedure de-
tailed in (De Andrade Lima et al., 2010), and the ranges obtained are
shown in Table 2. It is known that at normal levels in wines
(< 0.3 g l−1) the VA can be a desirable flavor, adding to the complexity
of taste and odor, as well, a content of less than 0.70 g l−1 seldom
imparts spoilage character. However, a progressive increment in VA
gives to the wines a sour taste and taints its fragrance (Jackson, 2008;
Zoecklein et al., 1995). Brazilian Ministry of Agriculture, Livestock and
Supply (Instrução Normativa N° 14, 2018) establishes that the max-
imum level of VA in wine is 1.2 g l−1.

The database collected using O-NOSE has 235 wines measurements
as follow: 51, 43, and 141 measurements of HQ, AQ, and LQ respec-
tively. Besides, we collected 65 ethanol measurements in concentra-
tions (v/v) of 2, 5, 10, 20, 30, and 40ml of ethanol diluted in distilled
water to make solutions of 200ml.

2.3. Feature extraction and selection

The most common groups of characteristics extracted from the gas
sensors signals are the steady and transient state features (J. Yan et al.,
2015). We used 23 features to capture the dynamic and static behavior
of each gas sensor. So, we obtained a 138 columns characteristics ma-
trix, where each row represents the fingerprint of one measurement.
One example of the raw data (Fig. 3a) evidences the sensor sensitivity
regarding VOCs analyzed. In Fig. 3b–c, we show the steady and tran-
sient features for the response of one sensor during the three intervals of
the acquisition procedure explained at the end of Section 2.1.

Afterward, we applied the SVM Recursive Feature Elimination Cross
Validation (RFECV) method to reduce the dimensionality, looking to
generate parsimonious and robustness models (Lin et al., 2012; K. Yan
& Zhang, 2015). Thus, it was chosen the followings steady-state char-
acteristics: =G max g k min g k[ ] [ ]k k , defined as the maximal con-
ductance change concerning the baseline, and its normalized version
( =G max g k min g k min g k( [ ] [ ])/ [ ]k k k ), as well, the area under the
curve in the absorption and desorption portions of the gas, blue and
gray areas in Fig. 3b, respectively. Additionally, we had an aggregate of
features reflecting the dynamics of the rising/falling transient portion
of the sensor response using an exponential moving average filter
(emaα) that converts the transient portion into a real scalar by
estimating the maximum/minimum value =y k[ ] (1 )

+y k x k x k[ 1] ( [ ] [ 1]), where =k T[ 1,2, ..., ], y [0] its initial
condition, set to zero =y( [0] 0, and the scalar ( {0,1}) being a
smoothing parameter of the operator such as was defined in

Table 1
Gas sensors array setup. The sensors manufactured by Hanwei Sensorsa are
commercially available. They have been chosen because of their high sensitivity
to organic, natural, ethanol, methanol, and combustible gases, as well as its
simplicity of use and low financial cost.

Number Sensor Description Load resistance

1, 4 MQ-3 High sensitivity to alcohol and small
sensitivity to Benzine

22 kΩ

2, 5 MQ-4 High sensitivity to CH4 and natural gas 18 kΩ
3, 6 MQ-6 High sensitivity to LPG, iso-butane, propane 22 kΩ

a www.hwsensor.com.

2 The generated dataset is publicly available to the research community at
https://data.mendeley.com/datasets/vpc887d53s/2.
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Muezzinoglu et al. (2009); Vergara et al. (2012). We tested three dif-
ferent values for = = =0.1, 0.01, and 0.001 as shown in Fig. 3c;
and by RFECV feature selection, it was chosen the max emaα with

= 0.01 as an informative transient feature.

2.4. Classification methods

We use two approaches for the classification tasks in this applica-
tion. The first one consists in applying feature extraction and selection
before the classifier. And the second one consists in processing an early
portion of the raw data.

2.4.1. Conventional approach to classification using SVM
In this approach, it is necessary to have the whole measurement to

obtain the main odorant parameters. We tested various kernels on an
SVM classifier and selected a gaussian kernel; then it was trained the
model. The block diagram of this approach (depicted in Fig. 4) exhibits
the steps performed that includes a feature extraction block generating
the Ci,j vector, where = …i 1,2 ,23 is the number of characteristics and

= …j 1,2 ,6 is the number of sensors. Afterward, the characteristics
vector feed the feature selection block, and finally, the chosen variables
are carried to the inputs of the SVM classifier.

2.4.2. Rapid and online detection approach using deep MLP
This approach is based on a neural network classifier that is feed

with the raw data to perform the discrimination tasks (Peng, Zhao, Pan,
& Ye, 2018). Inspired by the mentioned approach and looking to ac-
celerate the response, we propose a rapid detection method in wine
quality control, focused on an online solution that lets to achieve faster
results using only an early portion of the signals, similar to the pre-
sented in (Längkvist, Coradeschi, Loutfi, & Balaguru Rayappan, 2013)
for a meat spoilage application, but using a supervised method: deep
MLP neural network. The goal with this approach is to offer the pos-
sibility to make estimations a few seconds after beginning the mea-
surement process while it is still running. Note that we did not consider
the baseline of the sensor since generally in this slice there is no change.

Fig. 2. (a) Flowchart of the measurement setup. (b) Block diagram for wine spoilage detection using 1ml samples, the outcome is according to the wine quality.

Table 2
Ranges detected of volatile acidity and acetic acid according to the wine
spoilage thresholds. The ranges presented correspond to the minimum and
maximum values of the analysis.

Wine quality level Volatile acidity in g∙l−1 Acetic acid in g∙l−1

HQ [0.15, 0.3] [ND, 0.23]
AQ [0.31, 0.41] [0.24, 0.34]
LQ [0.8, 3] [0.74, 2.75]

ND: not detected.

Fig. 1. O-NOSE system. On the left side: system appearance and dimensions. Into 100ml concentration chamber is placed the wine sample. The sensors array is into
the 200ml chamber. On the right side: the main board with the gas sensors and the microcontroller. The gas is sensed by its effect on the sensitive layer of tin dioxide
(SnO2), resulting from changes in conductivity brought about by chemical reactions on the surface of the tin dioxide particles.
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Consequently, the data processing starts instantly before the gas in-
jection. A rising window method was applied to find the minor portion
of information with the best performance of the classifier. This reduces
the effort to obtain discrimination models since as complicated pre-
processing techniques no need to be applied and it is feasible by the
computational acceleration in the last years. Fig. 5 depicts the approach
employed.

The method to find the minor portion of information is as follows.
Given the data series = …X x x x, , ,j N1 2 , that represents the gas sensor
response = …j 1,2 ,6, their corresponding rising windows are defined as:

= …X x x, ,j t j j t, ,1 , , where = …t 1, , N , the step is N , the

window size is t , and the operator [.] denotes taking the integer part of
the argument. The time series in each window Xj t, are used to train the
deep MLP classifier. Fig. 5 exhibits the application of the rising win-
dows protocol in our dataset with = 50, hence each Xj,1 window has
50 points, each Xj,2 window has 100 points, and so on. The example
architecture of the deep MLP, shown in the same figure, corresponds to
the neural network used to process the data for the Xj,1 window. In this
case, the input layer size corresponds to the first window ( =t 1), six
sensors, step = 50; then, it has =6 (1x50) 300 points. The only data
preprocessing applied before the deep MLP neural network was a
simple data scaling in each window.

Fig. 3. (a) Wine measurement acquired with O-NOSE; S1, S2, …, S6: gas sensor outputs in conductance units G. (b) Output of a gas sensor; Gi: initial conductance
value, Gf: final conductance value, ΔGmaximal conductance change concerning the baseline. (c) Dynamics of the rising/falling transient portion using an exponential
moving average filter (emaα) for α=0.1, α=0.01, and α=0.001.
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3. Results

3.1. Data exploratory analysis

We performed the database exploratory analysis using the Principal
Components Analysis (PCA). The scores for the first components (2D

and 3D plots) for the wines are shown in Fig. 6. We also graph the PCA
scores of ethanol jointly wines, as shown in Fig. 7.

Based on this exploratory analysis, we performed two experiments
with the aim of comparing the performance when the classes are only
wines with three spoilage thresholds, and when the ethanol is present as
an additional class, which is evidenced as a more complex problem

Fig. 4. Block diagram of the conventional approach to classification using SVM. This diagram comprises a Feature Extraction block (FE), a Feature Selection block
(FS), and subsequently, the characteristics matrix feeds an SVM classifier.

Fig. 5. Rapid and online detection approach. Rising window protocol applied to the raw data searching for the minor portion of data to train the deep MLP classifier
with the best performance. On the right side is depicted the neural network architecture for the Xj,1 window with an input size of 300 points and four outputs (three
wine spoilage levels and ethanol). The meaning of “None” is unspecified input because we reshaped the data in a flatted array.

Fig. 6. PCA for the three wine groups HQ, AQ, and LQ. On the left side in 2D and the right side in 3D. It is revealed that O-NOSE detects differences between the three
groups according to its quality and spoilage threshold. In this case, the three principal components capture a cumulative variance of 81%.
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because the ethanol is an essential wine component. These two ex-
periments were performed so much for the conventional approach
using SVM, as for the rapid and online detection approach using deep
MLP neural network, and the results were compared at the end of
Section 3.

3.2. Conventional approach to classification using SVM

We used an SVM classifier applying the technique known as Leave
One Out (LOO), selecting the measurements of one bottle for the vali-
dation group and the remaining for the training group. Since as the
dataset contains twenty two bottles, we performed this procedure that
quantity of times, and we applied five folds cross-validation technique
to prevent the overfitting in the training set. We implemented the
scripts for this approach using Matlab R2016a and the Statistics and
Machine Learning Toolbox - version 10.2; and, to ensure the integrity of
the results, we repeated the procedure 100 times with data shuffling
before each training. Then, we averaged the accuracy of each experi-
ment.

In Table 3 are shown the parameters set on the SVM classifier for the
two experiments performed: experiment 1 to discriminate among the
three wine thresholds (LQ, AQ, and HQ); and experiment 2 to classify
among the three wine thresholds and ethanol (LQ, AQ, HQ, and Ea).
The recognition accuracy for training and validation, in the first ex-
periment, was 99.78% and 97.34%, and, for the second experiment,
98.31% and 96.23%, respectively.

3.3. Rapid and online detection approach using deep MLP

We did several simulations to find an early portion of the raw data
with the best recognition performance in the two experiments. To
achieve this, we applied the rising window protocol searching for the
minor portion of data to train the deep MLP classifier and averaging the
accuracy of each experiment. In this way, we applied the LOO-protocol

like the before experiments (Section 3.2), but now training the deep
MLP models of eight layers with full neurons connections as detailed in
Table 4 (architecture examples of experiment 2).

The original raw data have 3330 points, but as was explained in
Section 2, the baseline is not considered. Thus, we defined the interval
to analyze from the point 150 to the point 3300 (to ensure an integer

N ). Since as the step was = 50, we trained 63 models that corre-
spond to each Xj t, window using python 3.5.3, repeating the procedure
100 times with data shuffling. In the first experiment with the rapid and
online detection approach, the accuracy for the windows with the best
performance in the training data was 100%, that occurred 97% of the
times in windows with a size less or equal than Xj,24. This corresponds
to the first 64.86 s of the raw data interval. In validation data, the ac-
curacy for the windows with the best performance was 97.68%, that
occurred 88% of the times in the first window (Xj,1 ). This represents
only an early portion of the raw data, that is equivalent to the first 2.7s,
indicating a significant reduction in the time for the recognition when
compared to the conventional approach using the feature extraction/
selection method.

The results for the second experiment with this approach indicated
that the best performance occurred in windows with a size less or equal
than X ,j,13 corresponding to the first 35.13 s of the raw data interval.
The accuracy was 99.99%, and 96.34%; occurring 54% and 61% of the
times in training and validation, respectively. Note that, the separ-
ability of the data in this experiment is more complex than the ex-
periment 1 that includes only the three wine spoilage levels, causing
that the early portion time necessary for the recognition task being
greater. However, it is still less than using the conventional approach

Fig. 7. PCA for the three wine groups (HQ, AQ, LQ)
and ethanol (Ea). The close relationship between
ethanol and wine is evidenced more strongly for the
wines labeled as AQ. The groups labeled as HQ and
LQ have greater separation regarding the ethanol. In
the case of HQ, the organoleptic characteristics are
rich in other elements that characterize the excellent
taste. For the LQ, the taste is commonly described as
vinegar or metallic taste and low level of ethanol.

Table 3
Parameters of the SVM classifiers used for each experiment.ss.

Parameter Experiment 1 Experiment 2

Kernel function Gaussian Gaussian
Kernel parameter scale (gamma) 8.3 19
Box constraint level (C penalty parameter) 10 10
Multiclass method One-vs-One One-vs-One
Standardize data True True
Feature selection: variables used in the model 69 56
PCA disabled disabled

Table 4
Network architecture of three models for the classification using deep MLP,
where Xj t, is the time series in each window t . The trainable parameters are
computed as the multiplication between the inputs and the number of neurons
in each layer plus the bias number (see the examples for the layers one and
eight in the Xj,1 model).

Layer Neurons Trainable parameters

Xj,1 model Xj,12 model Xj,63 model

1 100 (300 × 100)+100 = 30100 360100 1.8901E+6
2 30 3030 3030 3030
3 30 930 930 930
4 30 930 930 930
5 30 930 930 930
6 30 930 930 930
7 30 930 930 930
8 4 (30 × 4)+4 = 124 124 124
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which consumes the whole measurement time, suggesting out-
performance for the online detection approach using deep MLP.

4. Discussion

The comparison based on the test results between the two discussed
approaches is presented in Table 5. We highlight the gain in timing for
recognition wine quality with our approach, and the possibility of using
this approach for online detection without preprocessing techniques.

The rapid and online detection approach has the highest computa-
tional time in the training. However, the training is performed offline
and in most cases is performed just once. Besides, the computational
time using the trained model is about a few milliseconds («1s) for the
two approaches and experiments. Finally, to support the results ob-
tained and assuming independence between both approach with 5% of
significance level, we performed the statistical comparison tests. The
results revealed that there is enough evidence to say that in the two
experiments the accuracy values for the forecasting with the conven-
tional approach is less than the accuracy values for rapid and online
detection approach.

In Table 6, we compared the results of (Peng et al., 2018) and
(Längkvist et al., 2013) with our results. We chose these approaches
because, unlike the classical feature selection method used in artificial
olfactory systems, they also used the raw data to process the gas signals.
In that way, in (Peng et al., 2018) was presented an approach based on
a Deep Convolutional Neural Network (DCNN) tailored for gas classi-
fication but using the entire signal measurement of the gas sensors,
resulting in a disadvantage regarding to our approach that lets to
achieve faster results using only an early portion of the signals. In
(Längkvist et al., 2013), similar to the approach proposed in our work,
they considered only the transient response centered on an online so-
lution but using unsupervised learning techniques (stacked restricted
Boltzmann machines and auto-encoders), although they also focused on
obtaining a rapid response, the accuracy of the system is not high.

Therefore, our results are better in terms of the time needed to perform
the detection. The comparison suggests that it is possible to obtain
better results in accuracy and time, using our method. Therefore, our
approach is promising for online analyses in E-Nose with low com-
plexity in hardware using standard gas sensors.

5. Conclusions

In this paper, we prove that it is possible to detect wine quality
thresholds in a rapid and online way using a deep MLP classifier pro-
cessing an early portion of the raw data. We obtained an estimation in
2.7 s after the gas injection started when we classified three wine
spoilage thresholds, and 35.13 s when we included ethanol measure-
ments as a class. Therefore, the rapid detection method lets to make
predictions 63 times faster for experiment 1, and at least five times
faster for experiment 2, when compared with the conventional ap-
proach that needs the whole measurement to obtain the main odorant
parameters and involves preprocessing techniques.

In this application, we employed Brazilian commercial wines. For fu-
ture works, it is expected that more researches been conducted including
other varieties of wines and more spoilage thresholds. Besides, the rapid
detection approach could be extended to other E-Nose applications.
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Table 5
Comparison between the conventional and the rapid detection approach.

Summary of test results Conventional approach Rapid and online detection approach

Experiment1 Experiment2 Experiment1 Experiment2

Average accuracy (%) 97.34 ± 0 96.23 ± 0 97.68 ± 4.6×10−3 96.34 ± 4.6× 10−3

Time for recognition (s) 171.89 171.89 2.7 35.13
Data preprocessing FE + FS FE + FS Scaling Scaling
Online NA NA Yes Yes
Input size 69 56 300 3900
Time for training (s) 16 27 99 130
Time for validation (s) «1 «1 «1 «1

Average accuracy is presented as the mean ± standard deviation obtained from 100 repetitions. The Mann-Whitney-Wilcoxon test was conducted with (P > 0.05).
FE: Feature extraction; FS: Feature selection; NA: Not available.

Table 6
Comparison of the rapid detection approach with other similar works.

Peng et al. (2018) Längkvist, Coradeschi, Lotfi, & Balaguru Rayappan (2013) Proposed work

Result1 Result2 Result1 Result2

Model DCNN DBN Deep MLP
Method Supervised Unsupervised Supervised
Application or gases CO, CH4, H, and C2H4 Ethanol and TMA Wine samples and ethanol
Gas sensor type MOS Nanostructured ZnO MOS
Online Not Yes Yes
Average accuracy (%) 95.2 60 ± 4.5 83.7 ± 4.1 97.68 96.34
Time for recognition (s) 100 5 25 2.7 35.13
Time for training (s) 154 NA NA 99 130

CO: carbon monoxide; CH4: methane; H: hydrogen; C2H4: ethylene; TMA: trimethylamine; DBN: Deep Belief Network; DCNN: Deep Convolutional Neural Networks;
MOS: Metal oxide semiconductor; NA: Not available.
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1. Data

The recorded time series was acquired at the sampling frequency of 18.5 Hz during 180 seconds,
resulting in 3330 data points per sensor. Each file in the dataset has eight columns: relative humidity
(%), temperature (�C), and the resistance readings in kU of the six gas sensors: MQ-3, MQ-4, MQ-6, MQ-
3, MQ-4, MQ-6.

We organized the database in three folders for the wines: AQ_Wines, HQ_Wines, LQ_Wines, and
one folder for the ethanol. Each folder contains text files that correspond to different measurements.

In the wines folders, each filename identifies a wine measurement as follows: the first 2 characters
of the filename are an identifier of the spoilage wine threshold (AQ: average-quality, HQ: high-quality,
LQ: low-quality); characters 4e9 indicate thewine brand; characters 11e13 indicate the bottle, and the
last 3 characters indicate the repetition (another sample of the same bottle). For example, file
LQ_Wine01-B01_R01 contains the time series recorded when low-quality wine of the brand 01, bottle
01, sample 01 was measured.

In the Ethanol folder, each filename identifies an ethanol measurement as follows: the first 2
characters of the filename are an identifier of Ethanol (Ea); characters 4e5 indicate the concentration
in v/v (C1: 1%, C2: 2.5%, C3: 5%, C4: 10%, C5: 15%, C6: 20%); and the last 3 characters indicate the
repetition. For example, file Ea-C1_R01 contains time series acquired when Ethanol at 1% v/v of con-
centration, sample 01 was measured.

Specifications table

Subject Food Science; Computer Science Applications; Signal Processing
Specific subject area Wine quality assessment using electronic nose technology
Type of data Text files
How data were acquired By using an electronic nose system (E-Nose) based on six Metal Oxide Semiconductor (MOS)

gas sensors (MQ-3, MQ-4, MQ-6; two of each type).
Data format Raw data, time series data
Parameters for data collection In each experiment was used a 1 ml sample to amass the volatiles during 30 seconds inside

the concentration chamber. The recorded data for each measurement corresponds to 180
seconds with 18.5 Hz sample rate. Then, the sensors were exposed to clean air for 600
seconds after the sample presentation.

Description of data collection We collected wine samples categorized into three spoilage thresholds: low-quality (LQ),
average-quality (AQ), and high-quality (HQ). In addition, we collected ethanol
measurements in concentrations of 1%, 2.5%, 5%, 10%, 15%, and 20% (v/v).

Data source location Institution: Universidade Federal Rural de Pernambuco
City/Town/Region: Recife, PE
Country: Brazil
Latitude and longitude (and GPS coordinates) for collected samples/data: Latitude: 8� 10

2.6800 Longitude 34� 560 52.211'' (Latitude: �8.017852 j Longitude: �34.94785)
Data accessibility Repository name: Mendeley Data

Data identification number: https://doi.org/10.17632/vpc887d53s.3
Direct URL to data: https://data.mendeley.com/datasets/vpc887d53s/

Related research article J.C. Rodriguez Gamboa, E.S. Albarracin E., A.J. da Silva, L. L. de Andrade Lima, T.A. E. Ferreira,
Wine quality rapid detection using a compact electronic nose system: application focused
on spoilage thresholds by acetic acid, LWT - Food Science and Technology. 108 (2019) 377
e384. https://doi.org/10.1016/j.lwt.2019.03.074.

Value of the data
� The dataset is available as a benchmark of E-Nose applications, focused on wine spoilage thresholds studies.
� This dataset is useful for testing classifiers and pattern recognition methods with comparison purposes in studies related

to E-Nose applications.
� To the best of our knowledge, this dataset is the first one publicly available regarding commercial wines measurements

acquired with E-Nose.
� These data are suitable to support E-Nose applications, helping in the decision-making of winemakers and consumers in

routine tasks of wine quality control [2].
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In Fig. 1, we depicted the time series for several measurements collected in this work. The mea-
surements displayed at the top of the figure are in resistance units (U), and at the bottom side are the
same measurements in conductance units (S).

2. Experimental design, materials, and methods

2.1. Experimental setup

The dataset was collectedwith an E-Nose self-developed, that was named O-NOSE.We designed the
datalogger for operating linked to a computer that has the proper software for data recording and
processing, as shown in Fig. 2.

The operating mode of O-NOSE is depicted with more details in Fig. 3. The device contains two
mini three-way solenoid valves ZHV 0519, and two mini air pumps PM201U (these actuators work
with þ5 VDC in the same way of all elements in the system) controlled by an embedded device:
microcontroller Arduino Nano. The microcontroller takes charge of the data acquisition from the gas
sensors and the temperature and humidity sensor DHT11 located into the sensors chamber. As well,
of the timing control of the solenoid valves and the air pump, and the communication with the
computer.

It used a 100 ml concentration chamber, where is placed the specimen to be analyzed. The sensor
array of six MOS gas sensors manufactured by Hanwei Sensors (MQ-3, MQ-4, andMQ-6; two of each) is
located into a 200 ml chamber connected to pneumatic hoses that carry the volatiles. The gas is sensed
by its effect on the sensitive layer of tin dioxide (SnO2), resulting from changes in conductivity brought
about by chemical reactions on the surface of the tin dioxide particles [3,4].

The stages of the measurement process are concentration, data acquisition, and purge. The first
stage aims to accumulate the analyte volatiles inside the concentration chamber for 30 seconds, to
achieve this, the microcontroller activates the valve 1 and the air pump; simultaneously, deactivates
the valve 2 for isolating the concentration chamber interior of the external environment. In Fig. 3, the
dashed line indicates the airflow at this stage.

The data acquisition stage that lasts 3min aims to collect the signals from the gas sensors, to achieve
this, the microcontroller deactivates the valve 1 and activates the valve 2 and the air pump to direct the

Fig. 1. Measurements acquired with our E-Nose, where S1, S2,…, S6 represent the gas sensors outputs; a. and e. correspond to the
dataset file EaC1R10 (ethanol measurement); b. and f. correspond to LQWine02B01R09 dataset file; c. and g. correspond to
AQWine01B01R07 dataset file; d. and h correspond to HQWine05B01R01 dataset file.

J.C. Rodriguez Gamboa et al. / Data in brief 25 (2019) 104202 3



airflow from the concentration chamber dragging the volatiles towards the sensors chamber. In Fig. 3,
the dotted line indicates the airflow at this stage.

The goal of the purge stage is to clean and remove volatile residues from the previous measurement
during 10 minutes. Hence, the microcontroller activates the valve 1 and the air pump; simultaneously,
deactivates the valve 2, the same way that for concentration stage. In Fig. 3, the dashed line indicates
the airflow at this stage.

2.2. Measurement protocol

O-NOSE performs the measurement process in three stages: concentration, data acquisition (the
recorded data corresponds to 180 seconds with 18.5 Hz sample rate) and purge [1]. Each measurement
corresponds to the time-dependent output voltages of each gas sensor converted to resistance values
according to the voltage-divider scheme [5] and the corresponding load resistor (RL). The sensor
resistance (RS) value changes when the gas sensor is exposed to a certain specimen and was calculated
as follows:

Rs ¼VC � VRL

VRL

� RL (1)

VRL
¼ ADC � VC

1023
(2)

where VC , VRL
, RL, ADC are the standard voltage of microcontroller (5V), the output voltage, sensor load

resistor, and the Analog to Digital Converter (ADC) reading, respectively [5].

Fig. 2. Operating general diagram of O-NOSE system.

J.C. Rodriguez Gamboa et al. / Data in brief 25 (2019) 1042024



2.3. Samples

We used 22 bottles of commercial wines of different varieties and vintages, elaborated in four
wineries of the S~ao Francisco valley (Pernambuco-Brazil). To obtain spoiled samples, 13 of the 22
bottles were randomly selected and left opened for six months before starting themeasurements (low-
quality LQ wines). Besides, four bottles were opened two weeks before beginning the data collection
(average-quality AQ wines), and the remaining five bottles were opened at the starting time of each
measurement (high-quality HQ wines) [1].

In addition to wines, we measured isolated ethanol in concentrations (v/v): 2, 5, 10, 20, 30, and 40
ml of ethanol diluted in distilled water to make solutions of 200 ml. These concentrations allow
guaranteeing a range that covers the different possible values in wines with and without spoilage. To
ensure the repeatability of the experiments using O-NOSE, we collected between 10 and 11 samples of
1mL of each wine bottles; and between 10 and 12 of the ethanol samples at their different concen-
trations. In this way, the database contains 235measurements of wines divided into three groups: high
quality (HQ), average quality (AQ) and low quality (LQ), with 51, 43, and 141 measurements, respec-
tively, and 65 ethanol measurements [1].
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A B S T R A C T   

Real-time gas classification is an essential issue and challenge in applications such as food and beverage quality 
control, accident prevention in industrial environments, for instance. In recent years, the Deep Learning (DL) 
models have shown great potential to classify and forecast data in diverse problems, even in the electronic nose 
(E-Nose) field. In this work, a Support Vector Machine (SVM) algorithm and three different DL models were used 
to validate the rapid detection approach (based on processing an early portion of raw signals and a rising window 
protocol) over diverse measurement conditions. We performed a set of experiments with five different E-Nose 
databases, including fifteen datasets to be used with these algorithms. Based on the obtained results, we 
concluded that the proposed approach has a high potential and reduces the response time for making E-nose 
forecasts. Because in more than 60 % of the cases, it achieved reliable estimates using only the first 30 % or fewer 
of measurement data (counted after the gas injection starts). The findings suggest that the rapid detection 
approach generates reliable forecasting models using different classification methods. Moreover, SVM seems to 
achieve the best accuracy and better training time.   

1. Introduction 

The conventional approach for data processing in the Electronic Nose 
implies using the entire response curves (including rising, steady-state, 
recovery phases, and other) of the gas sensors array. Besides, this 
approach includes steps such as signal pre-processing and feature gen-
eration/extraction before performing the classification tasks, which re-
quires the selection of a suitable method for each stage, increasing the 
necessary time to find the appropriate classification and forecasting 
models [1,2]. Some works focus on reducing the steps and know-how 
needed for model generation, such as the works presented by Liu et al. 
[3] and Längkvistet al. [4]. In Liu et al. [3], a bio-inspired data pro-
cessing method is proposed based on neural networks to mimic the 
mammalian olfactory system with high accuracy but using the entire 
measurement curves. In Längkvistet al. [4], the authors proposed a rapid 

detection system for meat spoilage using an unsupervised technique (i. 
e., stacked restricted Boltzmann machines and auto-encoders) that 
considers only the transient response. Although the obtained models 
offer advantages because they learn features from data instead of using 
hand-designed features, it may produce low suitable and inaccurate 
models due to the unsupervised method. 

Other authors have explored another approach based on raw data 
treatment [5,6]. This approach reduces the steps and development time. 
Still, it has only been tested with the entire response curves, requiring 
the completion of all measurement processes and can take critical time 
to perform a forecast. 

We proposed a novel approach on Rodriguez Gamboa et al. [7], 
based on processing an early portion of signals (while the measurement 
process is still running.) The proposed method was also tested in a wine 
quality application, obtaining excellent results against the traditional 
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methodology. A deep MLP classifier was trained with the raw data ac-
quired from an E-Nose composed of six Metal Oxide (MOX) gas sensors. 
We achieved results around 63 times faster (Eq. 1) compared with a 
traditional method (using the entire response curves, applying 
pre-processing techniques to extract the features and later processing 
them using an SVM algorithm.)   

Support Vector Machines (SVM) is one of the most applied methods 
for classification in E-Nose. Other used methods are K-Nearest Neighbors 
(KNN), Naive Bayes (NB), Linear Discriminant Analysis (LDA), and 
Adaptive Resonance Theory Map (ARTMAP) [8]. More recent ap-
proaches have used deep learning models [1,2,5,6], where the authors 
have also explored Convolutional Neural Networks (CNN). 

The present study focuses on validating if the rapid detection 
approach is suitable for diverse E-Nose settings (five different databases) 
[7]. Additionally, we test Deep Learning (DL) techniques such as Con-
volutional Neural Networks (CNN) against a more classical method like 
SVM for classification tasks in E-Nose using the proposed approach. 

2. Materials and methods 

In this work, we used five E-Nose databases that include fifteen 
datasets to test our approach. The tested databases correspond to 
different E-nose systems with diverse configuration and experimental 
setups, guaranteeing varied conditions. We intend to make this work as a 
reference for further research, encouraging the research community to 
perform more studies or analysis by using E-Noses with numerous da-
tabases and making public the collected databases. 

2.1. Databases 

2.1.1. Database 1: electronic nose dataset for the detection of wine spoilage 
thresholds 

This public database consists of time series collected through an 
electronic nose for a wine quality control application focused on 
spoilage thresholds. This database has two datasets, one of them 
composed of only wines (three-class classification problem), and the 
other comprises wines and ethanol (four classes). The database contains 
235 recorded measurements of wines divided into three groups, labeled 
as high quality (HQ), average quality (AQ), and low quality (LQ), in 
addition to 65 ethanol measurements. The time series acquired at 18.5 
Hz of sampling frequency during 180 s correspond to 3330 data points 
per sensor. Each file in the dataset has eight columns: relative humidity 
(%), temperature (◦C), and the resistance readings in kΩ of the six MOX 
gas sensors: MQ-3, MQ-4, MQ-6, MQ- 3, MQ-4, MQ-6. More details are 
available in [7,9]. 

2.1.2. Database 2: electronic nose for quality control of colombian coffee 
through the detection of defects in “Cup tests” 

This dataset consists of time-series recorded by an electronic nose 
used for the coffee quality control to detect defects in the grain [10,11]. 
The dataset contains 58 measurements of coffee samples divided into 
three groups and labeled as high quality (HQ), average quality (AQ), and 
low quality (LQ), inducing a three classes classification problem. The 
time series acquired at 1 Hz of sampling frequency during 300 s corre-
spond to 2400 data points for each measurement. Where, each file in the 

dataset has eight columns with the resistance readings in kΩ of the gas 
sensors: SP-12A, SP-31, TGS-813, TGS-842, SP-AQ3, TGS-823, ST-31, 
TGS-800. 

2.1.3. Database 3: gas sensor arrays in open sampling settings data set 
The authors compiled an extensive database through a chemical 

detection platform for detecting potentially hazardous substances at 
different concentrations, composed of nine portable sensor array mod-
ules (72 metal-oxide chemical sensors in a wind tunnel facility.) Each 
module had eight MOX gas sensors and positioned at six different line 
locations normal to the wind direction. Thus, creating thereby a total 
number of 54 measurement locations, uniformly distributed for a total of 
18,000 measurements. We split this database into six datasets (each 
dataset corresponds to one line location: L1, L2, …, L6). Different 
compounds, such as acetone, acetaldehyde, ammonia, butanol (butyl- 
alcohol), ethylene, methane, methanol, carbon monoxide, benzene, and 
toluene (ten classes) were measured to generate the database [12]. 

2.1.4. Database 4: gas sensor array exposed to turbulent gas mixtures Data 
set 

The generation of this dataset used the same wind tunnel mentioned 
in Section 2.1.3, but the wind tunnel was adapted from the previous 
setup to include two independent gas sources. Besides, only one module 
(eight MOX gas sensors array) was used in a fixed location in the wind 
tunnel. The sensors array was exposed to binary mixtures of ethylene 
with either methane or carbon monoxide. Volatile Organic Compounds 
(VOCs) were released at four different rates to induce different con-
centration levels in the module vicinity. Each configuration was 
repeated six times, for a total of 180 measurements. See [13,14] for 
additional details. In this work, we split the dataset to generate a 
four-class classification problem, including the followings categories 
(high ethylene concentration, medium ethylene concentration, low 
ethylene concentration, and without ethylene.) Hence, this is a chal-
lenging problem because the measurements were performed using two 
interfering gases (Methane, carbon monoxide) at different concentra-
tions, and all groups of measurements include binary mixtures of 
ethylene with combinations of the mentioned interfering VOC. 

2.1.5. Database 5: twin gas sensor arrays data set 
This database comprises the recordings of five twin devices (detec-

tion units) composed of eight gas sensors. This database has five datasets 
(B1, B2, …, B5) where each dataset corresponds to the measurements of 
one twin system (authors followed the same measuring experimental 
protocol in the five twin units). Every day, a different detection unit was 
tested using 40 distinct gas conditions, presented in random order, 
exposing each device to 10 concentration levels of Ethanol, Methane, 
Ethylene, and Carbon Monoxide (four classes). Each sensor’s conduc-
tivity for 600 s in each experiment was acquired by using a sample rate 
of 100 Hz. The authors tested the detections platforms for 22 days, but 
only 16 days were collected. Hence, the complete dataset comprises 640 
records [15]. 

2.2. Deep learning models 

The models generated were implemented by using the Python pro-
gramming language. In this study, three DL architecture implementa-
tions types were used for the classification tasks. The first type was a set 

relation of measurement time =

(
measurement time from the starting gas injection to the finish

necessary time for making a forecast or window size

)

(1)   
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of three simple DL models named SniffNets in [16]. The SniffNets were 
implemented employing the machine learning framework: Keras [17]. 
The second architecture implementation type was a DL model to 
perform meta-learning, adjusting the connections between different 
computing cells by differentiable search to obtain the best graph 
configuration while training. The authors called that methodology as 
Differentiable Architecture Search (DARTS) [18]. The DARTS imple-
mentation has been made available by its authors, but we adapted it so 
that the model could fit the shape of the target data. This implementa-
tion was created using the PyTorch library [19]. Finally, the third model 
corresponds to a simple Deep MLP model with only fully connected 
layers based on the model used in Rodriguez Gamboa et al. [7]. 

The input format used for the models with convolutional layers was a 
feature matrix with dimensions Rf x Cf, where Rf corresponds to the rows 
(represents the time interval) and the columns Cf that corresponds to the 
gas sensors used to detect the specimens. And Nn denotes the number of 
neurons of a given fully connected (Dense) layer. 

2.2.1. SniffNets 
Three models with different architecture implementations were 

generated based on [16], adapting the architectures to test the proposed 
rapid detection approach [7]. On these models, the softmax was used as 
the activation function for the output layer. 

The first model is a convolutional network [20] named Sniff ConvNet 
in this document, which consists of two layers that apply a 
bi-dimensional convolution (Conv2D), followed by two fully connected 
(FC) layers. We used the activation function ReLU in both Conv2D and 
FC layers. The second model is a residual network [21] named Sniff 

ResNet composed of two residual blocks, each with two Conv2D layers. 
In each block, the first convolutional layer has a skip connection joined 
to the second convolutional layer output. Two FC layers follow the two 
residual blocks. Like the Sniff ConvNet model, we used the activation 
function ReLU in the Conv2D and FC layers. The third model is a fusion 
neural network called Sniff Multinose. In this case, we adopted a 
different approach, where the feature matrix has a shape Rf X Cf. We split 
the feature matrix by columns Cf, and each one was used as an input of a 
Multilayer Perceptron (MLP) model. Then, we concatenated the outputs 
of all MLP models and utilized them as inputs of another MLP network to 
complete the classification model. Fig. 1 depicts the basic configuration 
of the Sniff ConvNet, Sniff ResNet, and Sniff Multinose. 

2.2.2. DARTS: differentiable architecture search 
Searching for optimal neural network architectures is a task that can 

be both difficult and time-consuming. DARTS [18] algorithm uses dif-
ferentiation to perform this search. The algorithm performs the search in 
a network considered as a directed acyclic graph. Each node xi repre-
sents the output of a subnetwork in the chart. For example, xi can be a 
feature vector from a fully connected Multilayer perceptron or a feature 
map from a convolutional layer. Let O be the set of all the arcs(i,j) being 
an operation between the i-th node to the j-th node pondered by a factor 
α(i,j). The arc(i, j) represents the connection between nodes xi and xj. 
This connection is the o(i,j) operation with inputs Xi and outputs Xj. 
Afterward, the initialization of a set of candidate operations between all 
nodes (i, j) of the graph, the search task is then performed by first 
computing the gradient of the loss function for the factors α(i,j) and then 
concerning the weights of the model. Thus, after computing the minimal 

Fig. 1. The architecture of the neural networks models used in the experiments: (a) Sniff ConvNets, (b) Sniff ResNet, and (c) Sniff Multinose.  

Fig. 2. The architecture of the neural network models used in the MLP experiments.  
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loss concerning the α and the weights in the arcs between (i,j), the al-
gorithm determines the optimal architecture according to the values of α 
[18]. We do not display the architecture scheme for the DARTS algo-
rithm because it is too large and increase the number of pages in this 
document. 

2.2.3. Deep MLP model 
We also used a Deep MLP model presented in [7]. The configuration 

of the model consists of eight layers with Tanh as the activation function 
except for the output layer, in which we used softmax. The input layer 
has 100 neurons, and all the hidden layers have 30 neurons. Fig. 2 de-
picts the basic configuration of the MLP architecture. 

2.2.4. Training configurations 
Three sets of DL models were trained until to reach 20 epochs by 

using the Stochastic Gradient Descent (SGD) algorithm for optimization 
with a learning rate of 0.001 and a momentum of 0.9. Besides, we used 

the categorical cross-entropy loss function. 
Regarding the training process in all tested classification methods, all 

datasets were randomly split as follows, training group including 80 % 
of measurements and the validation group with 20 %. Besides, we used 
the holdout cross-validation method. 

2.2.5. Configurations for the SVM model 
An SVM model available in the scikit-learn library was used. 

Furthermore, we defined the following parameters to optimize the 
model: A Radial Bayes Function (RBF) as the kernel, the regularization 
parameter C as 10, and the other settings as the default value. Given a 
dataset D with vectors of n features, the value computed for the gamma 
parameter is (n • variance(Dflat))− 1. Where variance (Dflat) is the variance 
over the flattened dataset. The algorithm computed the gamma value 
over the normalized data, using standardization or z-score normalization. 

Table 1 
Summary of experiments, showing the test data accuracy of the best window (b-win) and the accuracy of the last window (l-win), i.e., using all information after the gas 
injection. The most outstanding performance for each dataset displays highlighted in red color and green color for b-win and L-win columns, respectively. The means 
values obtained using the holdout cross-validation method as pointed in Section 2.2.4.  
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3. Results and discussion 

According to the rapid detection approach, the rising window pro-
tocol was applied to find the early portion with the best validation ac-
curacy in each dataset. We used different methods such as the DARTS 
search model architecture, a deep MLP, three DL models called Sniff 
(ConvNet, Resnet, and Multinose), and SVM, to validate the proposed 
approach and determine whether it could be applied independently to 
the classification method. Table 1 summarizes the experimental results 
to compare the test accuracy on the best and the last window. The results 
let infer that the models generated with the best windows are similar or 
outperform in the majority of cases (94.44 %) the models obtained using 
the complete information of the measurements. Results using other 
window sizes were not displayed in this document to not increase the 
number of sheets. Although, in some cases, the accuracy could be similar 

to the obtained with the best window (best accuracy), the method fo-
cuses on using the smaller early portion of information to perform a 
reliable forecast. Fig. 3 depicts the accuracy of the test data in the best 
windows for easy visualization. 

The best windows size for each dataset and model are depicted in 
Fig. 4. It is important to remark that the first-window (w1) corresponds 
to the first 10 % of measurement data, the second-window (w2) has 20 
% of the information, continuing until the tenth-window (w10) that has 
100 % of measurements data. The results suggest that 42.22 % of the 
cases, we can obtain suitable models using only 30 % or even less in-
formation, and 66.66 % of the time by applying the SVM classifier. The 
necessary time to get the appropriate models for each dataset and 
classification method is detailed in Table 2. Those times are only a 
reference to report which methods work faster in the training process 
when is adopted the rapid detection approach. 

Fig. 3. The classification accuracy rate of the test data over the 15 datasets for the tested methods.  

Fig. 4. The window size in percentage regarding the complete measurements over the 15 datasets for the tested methods.  
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Results showed similar accuracy for each dataset comparing the 
tested classification methods. The main difference is presented in the 
size of the best window. By comparing the Sniff models (gray bars in 
Figs. 3 and 4), SniffMultinose reached the best-combined performance 
on the 15 datasets because it has better average accuracy, shorter 
average training time, and an average size for the best window of 42 %, 
comparable to Sniff-ConvNet 40 %. The DARTS algorithm (red bars in 
Figs. 3 and 4) generates models that outperform the models created by 
the Sniff and MLP architectures tested in this work. Still, it is the method 
that needs more time in the training process to generate reliable models 
and reached the worst average size for the best window 71.33 %, more 
significant than the obtained with Sniff-Resnet 61.33 %, MLP 44.66 %, 
and SVM 27.33 %. 

Analyzing the window size with the best accuracy on the test data, 
we conclude that based on the tested classification methods (DL tech-
niques and SVM), the rapid detection approach is reliable for electronic 
nose applications. The results achieved in this study validate the use of 
the proposed method in E-Nose datasets. Besides, it is relevant to remark 
that in the majority of cases, the SVM classifier (blue bars in Figs. 3 and 
4) generates models that use only an early portion of information, which 
entails faster forecasts. Additionally, the training time is relatively less, 
reducing the computational cost. Therefore, the mentioned findings 
suggest that in the electronic nose field, SVM is competitive with deep 
learning techniques for classification tasks. DL techniques increase the 
necessary time to generate reliable models and, in some E-nose datasets 
do not reach better results. 

4. Conclusions 

In this research, we validated the rapid detection approach [7] in 
several datasets with diverse electronic nose settings, showing that it is 
suitable in this field, with better or similar accuracy in 14 of 15 datasets, 
when compared with a conventional approach that needs the complete 
information of the measurements. 

The investigation allowed finding that in the majority of times is 
possible to obtain a reliable forecast using only the first 30 % (even less) 
of the measure after the gas injection started. Therefore, subsequent 
investigations could focus on generating models using only this portion 
of the gas sensors signals, which entails reducing the time to produce 
models and make the forecasts (accelerating response). 

In this work, the proposed approach was also validated by using 
several classification methods; the SVM algorithm and three different DL 
architectures: (i) the Differentiable Architecture Search (DARTS) algo-
rithm, (ii) three deep learning models based on SniffNets, and (iii) a 
Deep MLP. Although deep learning models are useful when there is a 
large volume of data, and it can automatically identify patterns. The 
results showed that using SVM models in the majority of cases, the re-
sults are similar or even better and were consistent concerning the early 

portion of signals needed to make reliable forecasts. Therefore, SVM still 
is an option in the electronic nose field and could be used to apply the 
rapid detection approach, as well, the tested deep learning techniques. 
Still, SVM needs less time for the training process against the other 
tested classifications methods. 
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