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Nomenclature

• EE: Exponential Exponentiated.

• EG: Exponentiated Generalized.

• EGF: Exponentiated Generalized Fréchet.

• EGN: Exponentiated Generalized Normal.

• EGBS: Exponentiated Generalized Birnbaum-

Saunders.

• EGGu: Exponentiated Generalized Gumbel.

• EGNH: Exponentiated Generalized Nadarajah-

Haghighi.

• EGKw: Exponentiated Generalized Ku-

maraswamy.

• Xi
st
= X: Xi is equal stochastically to X .

• α
m
� β: α is said to majorize β.

• α
w
� β: α is said to weakly supermajorize β.

• α �w β: α is said to weakly submajorize β.

• X ≤lr Y : likelihood ratio order.

• X ≤hr Y : hazard rate order.

• X ≤rhr Y : reversed hazard rate order.

• sign
= : equals sign.

• TIW: Transmuted Inverse Weibull.

• CDF: Cumulative distribution function.

• PDF: Probability density function.

• GoF: Goodness-of-Fit.

• ML: Maximum Likelihood.

• LC: Log-Cumulants.

• LM: Log-Moments.

• MT: Mellin transform.

• SD: Standard Deviation.

• CV: Coefficient of Variation.
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Abstract

In this thesis, we provide results in two fields. In the first one, the main idea is to make stochastic comparisons

by using the majorization theory. We investigate conditions on the parameters of the Exponentiated Gener-

alized class with equal and different baselines. In the second one, to describe the fits of models to the data

by using Goodness-of-Fit measures, we use the Transmuted Inverse Weibull distribution and derive the Mellin

Transform from that model. We estimate the parameters by Moments, Maximum Likelihood function, and

Log-Cumulants methods. An interesting analysis is carried out with Hotelling’s T 2 Statistic. In this step, we

construct Log-Cumulants diagrams and furnish ellipses of confidence for Log-Cumulants. The applications

in this part were based on lifetime datasets such as mechanical components’ survival time, electrical insulator

films’ failure times, and censored data from times of bladder cancer patients. We present some simulation re-

sults to verify the performance of the Moments, Maximum Likelihood function, and Log-Cumulants methods.

Kolmogorov-Smirnov and Cramér-von Mises as Goodness-of-Fit criterias are used. Monte Carlo methods such

as bootstrap and Jackknife are used to estimate population characteristics. The Mellin-based Goodness-of-Fit

test’s performance is compared with Anderson-Darling and Kolmogorov-Smirnov tests.

Keywords: Goodness-of-Fit, Hotelling’s T 2 Statistic, Log-Cumulants, Majorization, Order statistics, Pa-

rameters Estimation.
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Resumen

En esta tesis, se aportan resultados en dos campos. En el primero, la idea principal es realizar comparaciones

estocásticas utilizando la teorı́a de la mayorización. Se investigan condiciones sobre los parámetros de la clase

exponencial generalizada con distribuciones-base iguales y diferentes. En el segundo campo, se describen los

ajustes de los modelos a los datos utilizando medidas de bondad-de-ajuste, se utiliza la distribución Weibull

Inversa Transmutada y se deriva la transformada de Mellin de ese modelo. Se estiman los parámetros mediante

los métodos de Momentos, Función de Máxima Verosimilitud y Log-Cumulantes. Un análisis interesante se

lleva a cabo con el estadı́stico T 2 de Hotelling. En lo que sigue, se construyen diagramas de Log-Cumulantes

y proporcionamos elipses de confianza para Log-Cumulantes. Las aplicaciones de esta parte se basan en con-

juntos de datos de vida útil, como el tiempo de supervivencia de los componentes mecánicos, los tiempos de

falla de las pelı́culas aislantes eléctricas y los datos censurados de los tiempos de los pacientes con cáncer de

vejiga. Presentamos algunos resultados de simulación para verificar el rendimiento de los métodos de Mo-

mentos, Función de Máxima Verosimilitud y Log-Cumulantes. Se utilizan los criterios de bondad de ajuste de

Kolmogorov-Smirnov y Cramér-von Mises. Para estimar las caracterı́sticas de la población se utilizan métodos

de Monte Carlo como bootstrap y Jackknife. El rendimiento de la prueba de bondad de ajuste basada en la

transformada de Mellin se compara con las pruebas de Anderson-Darling y Kolmogorov-Smirnov.

Palabras Clave: Bondad de Ajuste, Estadı́stica T 2 de Hotelling, Log-Cumulantes, Majorización, Es-

tadı́sticas de Orden, Estimación de Parámetros.
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Resumo

Nesta tese, fornecemos resultados em dois campos. No primeiro, a ideia principal é fazer comparações es-

tocásticas utilizando a teoria da majoração. Investigamos condições sobre os parâmetros da classe Exponenci-

ada Generalizada com distribuições-base iguais e diferentes. No segundo, para descrever os ajustes dos mode-

los aos dados por meio de medidas de bondade-de-ajuste, usamos a distribuição Weibull Inversa Transmutada

e derivamos a Transformada Mellin desse modelo. Estimamos os parâmetros pelos métodos de Momentos,

função de Máxima Verossimilhança e Log-Cumulantes. Uma análise interessante é realizada com a estatı́stica

T 2 de Hotelling. Nesta etapa, construı́mos diagramas de Log-Cumulantes e fornecemos elipses de confiança

para os Log-Cumulantes. As aplicações nesta parte foram baseadas em conjuntos de dados de vida útil, tais

como tempo de sobrevivência de componentes mecânicos, tempos de falha de filmes isolantes elétricos, e dados

censurados de tempos de pacientes com câncer de bexiga. Apresentamos alguns resultados de simulação para

verificar o desempenho dos métodos de momentos, função de Máxima Verossimilhança e Log-Cumulantes.

Kolmogorov-Smirnov e Cramér-von Mises como critérios de bondade-de-ajuste são usados. Os métodos Monte

Carlo, tais como bootstrap e Jackknife são usados para estimar as caracterı́sticas da população. O desempenho

do teste de bondade-de-ajuste baseado na transformada de Mellin é comparado com os testes Anderson-Darling

e Kolmogorov-Smirnov.

Palavras Chave: Bondade de ajuste, estatı́stica T 2 de Hotelling, Log-Cumulantes, Majoração, estatı́sticas

de ordem, estimação de parâmetros.
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Chapter 1

Introduction

Studies based on distribution functions have been applied in different areas of statistics and engineering, for

example, survival analysis is one of that. This field use tools to study life times, survival times (Lee et al.,

2007), failure time (Pescim et al., 2013) and reliability (Kececioglu, 2002; Meeker et al., 2021), among others.

In the same way, new distribution functions have been emerging, and with them, the applications are trying to

solve or improve some problems in the real life.

The motivation for studying stochastic comparisons and goodness-of-fit (GoF) theory was given in terms

of distributions field. This as an alternative to expand the study of distributions in two areas of interest to

researchers.

In the first part of this study, we are interested in comparing random variables, due to the fact, comparisons

based on moments, for example, mean, variance and standard deviation, are not very informative, though they

are simple to use. As a consequence, in the literature we can find how to compare variabilities of random

variables based on their complete distribution functions (Müller and Stoyan, 2002; Balakrishnan et al., 2020).

On the other hand, using the Mellin Transform associated with a random variable has several advantages,

among them simplifying calculations and providing new results in GoF measures. There are many GoF tech-

niques, however for new distribution functions those techniques may sometimes not give good results of fits.

To use them, depends on the methods that pretend to see how well a sample of the data with a given distribution

describes its population (D’Agostino, 1986). The focus in that part of the document is based on the Mellin

Transform and the T 2 statistic by Log-Cumulants.

This document contains independent chapters; for that reason, sequential reading is unnecessary. Now, we

visualize the following objectives in this thesis.

Contributions to the science with higher advanced topics in applied statistics and from researchers’ interest,
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specifically in stochastic comparisons, distribution functions and GoF measures are presented here.

Main Goals:

A) To analyze the basic majorization theory to compare random variables from the Exponentiated General-

ized Class;

B) To propose a new measure of Goodness-of-Fit for the Transmuted Inverse Weibull distribution.

Specific Goals:

A1) To compare the maximum of independent random variables under certain conditions in the Exponentiated

Generalized Class parameters;

A2) To provide new results in the Exponentiated Generalized Class context by using stochastic comparisons;

A3) To give a possible application of the stochastic comparisons.

B1) To build the Mellin Transform for Transmuted Inverse Weibull distribution;

B2) To derive the Log-Cumulants expressions of the Transmuted Inverse Weibull distribution;

B3) To propose a parameter estimation criteria based on Log-Cumulants from Transmuted Inverse Weibull

distribution;

B4) To use the Mellin Transform to applied in a specific Goodness-of-Fit measure;

B5) To derive the T 2 statistic based on Log-Cumulants estimated;

B6) To verify the performance estimators by computational study with the Transmuted Inverse Weibull dis-

tribution.

B7) To compare the Moments, Maximum Likelihood and Log-Cumulants methods through the computational

study.

B8) To compare the Kolmogorov Smirnov and Cramér-vom Mises statistics as Goodness-of-Fit criterias.

The thesis is directed with the aim to give new results in the statistic literature, specifically in the general

field of distributions. To accomplish this, the work is organized as follows: In Chapter 2, some preliminary no-

tions. Chapter 3, is about stochastic comparisons: The most straightforward way of comparing two distribution

functions is by the comparing the associated means. However, such a comparison is based on only two single
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numbers (the means), and therefore it is often not very informative. In addition, the means sometimes do not

exist (Shaked and Shanthikumar, 2007). One can find several forms of study on the underlying distributions in

terms of their survival functions, failure rate, quantile, among others. These methods are more informative than

those based on only numerical characteristics of distributions. Comparisons of random variables based on these

functions often establish partial orders between them known as stochastic orders (Torrado and Lillo, 2013).

Here, we consider stochastic comparisons with the Exponentiated Generalized Class. Some relevant ba-

sic concepts on stochastic orderings, such as order statistics, Schur-convex, and Schur-concave concepts, are

needed to understand the results. Ordering properties of lifetimes of parallel systems with equal and different

distributions are presented. Examples and counterexamples illustrate our results. Finally, remarking that, for

the moment, it is impossible to do a simulation study in this work because we need other tools that flee from

the focus of our research. However, we give a possible application case.

Chapter 4, is about GoF measures through on the Mellin transform. The first tests hypotheses about whether

a distribution fits well with the data. Anfinsen et al. (2011) mentioned that the procedure measures the discrep-

ancy of the data sample concerning the distribution model. It provides a test statistic, which is used to decide

whether the null hypothesis should be rejected or not rejected. Also, they spoke in that article about different

types of GoF tests such as the well-known Chi-Square, Kolmogorov-Smirnov, empirical distribution function

test, or the test based on regression. The second one, the Mellin Transform, is a simple transposition of the defi-

nitions of the characteristic functions from the Fourier field to the Mellin field, opening a new path and avoiding

heavy calculations. In this sense, we propose an estimation method based on Log-Cumulants using the Mellin

Transform. The parameter estimation is based on the Moments, Maximum Likelihood, and Log-Cumulants

methods. And then, some applications in survival data are presented (Nicolas, 2006).

In Chapter 5, a simulation study is carried out. For different parameter scenarios and sample sizes, we

find the average estimates for Transmuted Inverse Weibull model by using the methods of Moments, Max-

imum Likelihood estimation and Log-Cumulants. Also, we use the general GoF test approach, which uses

distance statistics such as the Kolmogorov-Smirnov and Cramer-von Mises statistics and the power of the tests

to estimate measures. Finally, in Chapter 6, the conclusions and future recommendations are given.
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Chapter 2

Preliminary Notions

This chapter reviews some results needed to develop the following chapters. We present notions, concepts and

definitions from the literature such as Balakrishnan and Torrado (2016) and Marshall et al. (2011), and they

are necessary to understand and claryfy the content in each chapter. Next, two sections are presented. The first

section is about general majorization theory concepts, and the second is about some Goodness-of-Fit theories.

The notation here is the same used, specifically existing in the literature in each field.

2.1 Majorization Theory

Since 1979 the origins of majorization were in comparisons of inequalities in different manners from different

fields, then different applications appeared in Marshall et al. (2011). The first comprehensive study of the

stochastic comparisons and functions preserving the ordering of majorization was made by Schur. To refer to

the concept of Schur-Convex functions, we must mention the partial ordering (�) of any set A ⊂ Rn.

Definition 2.1.1. (Order-Preserving) A real valued function φ defined on R which satisfy φ(α1) ≤ φ(α2)

whenever α1 � α2 with α1, α2 ∈ A are referred to as monotonic, isotonic, or order-preserving.

Another concepts presented are parallel and series systems, which are presented below.

Definition 2.1.2. (Series and Parallel System) A k-out-of-n system of n components functions if and only if at

least k of the components function. The time to failure of a k-out-of-n system of n components with lifetimes

X1, X2, . . . , Xn, corresponds to the (n − k + 1)-th order statistic, that is Xn−k+1:n. Thus the study of the

lifetimes of k-out-of-n systems is equivalent to the study of the probability distributions of order statistics. A

series system is an n-out-of-n system and a parallel system is a 1-out-of-n system. Thus the time to failure of

10



a series system corresponds to the first order statistic while that of a parallel system corresponds to the largest

order statistic.

A series and parallel system illustration is giving in Figure A and Figure B, respectively.

Figure A: Series System (own source)

Figure B: Parallel system (own source)

Definition 2.1.3. (Multiple-Outliers) A multiple-outlier model is a set of random variables X1, X2, . . . , Xn

such that Xi is equal stochastically to X , denoted by
(
Xi

st
= X

)
, for i = 1, 2, . . . , p, and Xi

st
= Y , for

i = p+ 1, p+ 2, . . . , n, where 1 ≤ p < n. It is further assumed that the two samples are independent.

In Figure C, we illustrate the multiple-outlier concept in an applied Example 2.1.1.

Example 2.1.1. Assume two subsystems connected, where each one is formed by n components. Without loss

of generality, it consists of two repair lines for component parts of a machine. If the machine does not have the

k-th damaged part, it goes to the next stage, even being able to go to the second line, until the machine comes

out completely repaired.

X1

X2

Xp

Yp+1

Yp+2

Yn

...

Y1

Y2

Yp

Xp+1

Xp+2

Xn

...

...
...

Figure C: Multiple-Outliers system illustration (own source)
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2.2 Notions About Goodness-of-Fit

The fit of a distribution to the dataset can be verified through the GoF tests such as Kolmogorov-Smirnov and

Cramér-Von Mises. These tests are based on the empirical distribution function and quantify a distance between

the empirical distribution function of the sample and the cumulative distribution function of the reference

distribution; for more details see Kececioglu (2002).

The Cramér-Von Mises test is defined by

W 2
n =

1

12n
+

n∑
i=1

(
F0(xi:n|Θ)− 2i− 1

n

)2

. (2.1)

The Cramér-Von Mises estimators of the parameters Θ are obtained by minimizing concerning Θ the function

(2.1).

The Kolmogorov-Smirnov test is the best-known and most widely used Goodness-of-Fit test based on the

empirical distribution function due to the fact its relative simplicity and computational use. Is defined as

Dn = max
1≤i≤n

{
i

n
− F (xi:n|Θ), F (xi:n|Θ)− i− 1

n

}
.

Where F (·) is the theoretical cumulative distribution function wholly specified, and xi:n are the order statistics

of a statistical sample.

2.3 Bootstrap and Jackknife methods

Statistical resampling methods have been practical for parameter estimation, their fundamental idea is to esti-

mate the characteristics of a statistic by obtaining repeated samples of the original data and making inferences

about those resamplings. This section focuses on resample techniques such as Bootstrap and Jackknife.

i) Bootstrap: A first idea of a statistician is to study a sample (mean, median, variance) and then generalize

the results to the population scientifically. Efron (1979) introduced a statistical method called bootstrap

for setting standar errors, biases, confidence intervals, and others. Let us suppose that samples of the

same size are repeatedly drawn from the population a large number of times to have a good approach to

the distribution of a certain statistic, from the collection of its values arising from these repeated samples

collecting information in an economical and timely manner.

The idea behind bootstrap is to use the data of a sample study as a surrogate population to approximate

the sampling distribution of a statistic, that is, to resample (with replacement) from the sample data at

12



hand and create a large number of phantom samples known as bootstrap samples. The sample summary

is then computed on each bootstrap samples (usually a few thousand). A histogram of the set of these

computed values is referred to as the bootstrap distribution of the statistic (Singh and Xie, 2008).

ii) Jackknife: This method was proposed by M. H. Quenouille (1949). Later, John Tukey in 1956 refined

this technique. Initially, this technique was to correct the bias, but later, Tukey used it to build confidence

limits. This technique is similar to the bootstrap in that it involves resampling, but instead of sampling

with replacement, the method samples without replacement (Miller, 1974).
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Chapter 3

Stochastic Comparisons Of Parallel Systems

With Exponentiated Generalized Class

Abstract
In this chapter, we study different stochastic comparisons for life times of parallel systems using the expo-

nentiated generalized class. From equal and different baseline distribution, we compare the maximum of two

independent samples under certain conditions in the parameters, using the reversed hazard rate order and the

usual stochastic order. Finally, we show examples and counterexamples.

Keywords: Majorization Theory, Order Statistics, Parallel System, Reliability.

3.1 Introduction

Results on stochastic comparisons using order statistics and majorization theory have been obtained in recent

years. Some of these studies showed comparisons between random variables following a certain distribution. It

may refer for example to Dykstra et al. (1997), Kochar (2012), Torrado and Lillo (2013), Torrado and Kochar

(2015), Torrado (2015), Kundu and Chowdhury (2016), Torrado (2017), Biswas and Gupta (2019), Balakrish-

nan et al. (2020), among many others. Recently, Kundu and Chowdhury (2018), Chowdhury (2019), Kayal

(2019) and Kayal and Nanda (2020) used generalized families for comparing parallel systems, that is, they use

the maximum statistic for comparisons.

Between recent publications, Kayal and Kundu (2021), considered stochastic comparison between two

systems when the associated systems’ components do not receive random shocks and also they derived

majorization-type partial order based sufficient conditions for the comparisons of the extreme order statistics
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in the sense of various stochastic orders such as the usual stochastic, likelihood ratio and hazard rate orders.

Kayal and Kundu (2021), considered stochastic comparison of the largest and the smallest order statistics aris-

ing from heterogeneous log-logistic distributions. Kayal et al. (2022), analyzed stochastic comparison of two

finite mixture models with respect to usual stochastic order when the mixture components have a general family

of distributions. Sattari et al. (2022), examined the problem of stochastic comparisons of series and parallel sys-

tems with independent heterogeneous new extended Weibull distributed components. Barmalzan et al. (2022),

analyzed stochastic comparisons of parallel and series systems consisting of dependent multiple-outlier scale

components with Archimedean copula as the joint distribution in terms of likelihood ratio and dispersive orders.

Following the line of generalized models, Gupta et al. (1998), were the first to propose a generalization

of the standard exponential distribution, known as Exponential Exponentiated (EE) distribution. Let X be a

random variable following an EE distribution with parameters λ > 0, α > 0, the scale and shape parameters,

respectively, denoted by X∼EE(α, λ), then its cumulative distribution function (CDF) is given by

F (x) =
(

1− e−λx
)α

I(0,∞)(x),

where IA(·) is the indicator function that defines the distribution support.

To further extend the results, Cordeiro et al. (2013), proposed a class of distributions called Exponentialized

Generalized (EG) class. Then, if X∼EG(α, β,G(·)) its cdf is defined by

F (x) = [1− (1−G(x))α]β , (3.1)

where α > 0 and β > 0 are additional shape parameters andG(·) is a continuous cdf. Thus, the EG class allows

greater flexibility and control over its tails providing better fits. Observe that, now the support is not necessary

positive real numbers. The probability density function (pdf) of the EG class, where g(·) is the density function

associated to the baseline distribution G(·), is given by

f(x) = αβg(x) (1−G(x))α−1 [1− (1−G(x))α]β−1 . (3.2)

Now, we want to highlight an interesting observation, if we take α = 1 in (3.1), or β = 1, we obtain the

Lehmann type I and II, respectively (Lehmann, 1953). The aspects in the paper of Lehmann was very important

to developed the distributions literature, simply with different choices of baseline distribution. Balakrishnan

(2021) mentioned that all these distributions, are part of the Lehmann family, each one with their properties in
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inferential aspects and used for modeling purposes.

From (3.1) and (3.2), we obtain the reversed hazard (failure) rate function as follows

r̃(x) =
αβrG(x) (1−G(x))α

1− (1−G(x))α
, (3.3)

where rG(x) is the hazard rate function associated to G(·) distribution.

The goal of this chapter is to compare the maximum of two independent samples, from the same and dif-

ferent baseline distributions, under certain conditions in the parameters of the exponentiated generalized class.

The examples/counterexamples were based on the distributions EG Fréchet (EGF) and EG normal (EGN) by

Cordeiro et al. (2013), EG Birnbaum-Saunders (EGBS) by Cordeiro and Lemonte (2014), EG Gumbel (EGGu)

by Andrade et al. (2015), EG Nadarajah-Haghighi (EGNH) by VedoVatto et al. (2016) and EG Kumaraswamy

(EGKw) by Elgarhy et al. (2018).

If the random variablesX1, X2, . . . , Xn are arranged in ascending order of magnitude, then the i-th smallest

of X ′is is denoted by Xi:n and those ordered quantities X1:n ≤ X2:n ≤ . . . ≤ Xn:n, are called order statistics

in which Xi:n is the i-th order statistic. The smallest and largest of these statistics, known as minimum and

maximum, play a fundamental role in statistics, reliability theory, applied probability, among other fields. Thus,

the (n− k + 1)-th order statistics in a sample of size n represents the life length of a system k-out-of-n, that

consists of n components with independent and identically distributed life lengths. Here, all n components

start working simultaneously, and the system works, if at least k components function; i.e., the system fails if

(n − k + 1) or more components fail. Special systems cases are series and parallel systems, studied in Fang

and Zhang (2013), Kundu et al. (2014), Torrado and Kochar (2015) and Torrado (2017), among others.

This research is organized as follow: In section 3.2 some basic notions about majorization theory, important

lemmas and theorems are presented do develop our research. Section 3.3 the main result, we investigate condi-

tions on the parameters of the EG class to do stochastic comparisons and finally we present the conclusions.

3.2 Notations, definitions and some preliminary results

In this section, we introduce some definitions and concepts that are fundamental to understand stochastic

inequalities. For more information on this theory, see Marshall et al. (2011) and Shaked and Shanthikumar

(2007).

Definition 3.2.1. Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) be vectors in Rn. Then,

(i) α is said to majorize β (α
m
� β) if
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j∑
i=1

αi:n ≤
j∑
i=1

βi:n, for all j = 1, 2 . . . , n− 1 and
n∑
i=1

αi:n =
n∑
i=1

βi:n,

(ii) α is said to weakly supermajorize β (α
w
� β) if

j∑
i=1

αi:n ≤
j∑
i=1

βi:n, for all j = 1, 2 . . . , n,

(iii) α is said to weakly submajorize β (α �w β) if

n∑
i=j

αi:n ≥
n∑
i=j

βi:n, for all j = 1, 2 . . . , n.

Remark 3.2.1. Note that α
m
� β implies α

w
� β and α �w β.

Let X and Y two absolutely continuous random variables with cumulative distribution functions F (·) and

H(·), probability density functions f(·) and h(·), survival functions F̄ (·) = 1− F (·) and H̄(·) = 1−H(·),

hazart rate functions r = f(·)/F̄ (·) and s = h(·)/H̄(·), reversed hazard rate r̃ = f(·)/F (·) and s̃ = h(·)/H(·),

respectively.

Definition 3.2.2. X is said to be smaller than Y in

1. likelihood ratio (denoted as X ≤lr Y ) if h(x)/f(x) is increasing in x ≥ 0;

2. hazard rate order (denoted as X ≤hr Y ) if r(x) ≥ s(x), or equivalently H̄(x)/F̄ (x) is increasin in x,

for all x ≥ 0;

3. reversed hazard rate order (denoted as X ≤rhr Y ) if r̃(x) ≤ s̃(x), or equivalently H(x)/F (x) is

increasin in x for all x ≥ 0;

4. usual stochastic order (denoted as X ≤st Y ) if F (x) ≥ H(x), or equivalently F̄ (x) ≤ H̄(x) for all x.

Remark 3.2.2. Note that, X ≤lr Y =⇒ X ≤rhr Y (X ≤hr Y ) =⇒ X ≤st Y .

For more datails see, Marshall et al. (2011), Chapter 17 Stochastic Ordering, Section A: Some Basic

Stochastic Orders, A.1. Definition (st), A.7. Definition. (hr), A.8., A.11. Definition (lr).

Now, let us to introduce some notations:

(i) D = {(α1, α2, . . . , αn) ∈ Rn : α1 ≥ α2 ≥ · · · ≥ αn}.
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(ii) D+ = {(α1, α2, . . . , αn) ∈ Rn : α1 ≥ α2 ≥ · · · ≥ αn > 0}.

(iii) E = {(α1, α2, . . . , αn) ∈ Rn : α1 ≤ α2 ≤ · · · ≤ αn}.

(iv) E+ = {(α1, α2, . . . , αn) ∈ Rn : 0 < α1 ≤ α2 ≤ · · · ≤ αn}.

The following definition and lemmas are well known and can be found in (Marshall et al., 2011) and (Kundu

et al., 2016).

Definition 3.2.3. Let In be an n−dimensional Euclidean space where In ⊂ Rn. The function ϕ : In −→ R is

Schur-convex (resp. Schur-concave) on In if α
m
� β implies ϕ(α) ≥ (resp. ≤) ϕ(β) for all α,β ∈ In.

Lemma 3.2.1. (Theorem 3.1 of Kundu et al. (2016)). Let I ⊆ R an interval. Consider κ : I −→ R, a

continuous function. Let ϕ(x) =
n∑
i=1

uiκ(xi) with x ∈D.

(a) If u= (u1, u2, . . . , un) ∈D+ and

(i) κ is increasing and convex, then ϕ(x) is Schur-convex onD;

(ii) κ is decreasing and concave, then ϕ(x) is Schur-concave onD.

(b) If u= (u1, u2, . . . , un) ∈ E+ and

(i) κ is increasing and concave, then ϕ(x) is Schur-concave onD;

(ii) κ is decreasing and convex, then ϕ(x) is Schur-convex onD.

Lemma 3.2.2. (Theorem 3.2 of Kundu et al. (2016)). Let I ⊆ R an interval. Let κ : I −→ R be a continuous

function. Let ϕ(x) =
n∑
i=1

uiκ(xi) with x ∈ E.

(a) If u= (u1, u2, . . . , un) ∈D+ and

(i) κ is increasing and concave, then ϕ(x) is Schur-concave on E;

(ii) κ is decreasing and convex, then ϕ(x) is Schur-convex on E.

(b) If u = (u1, u2, . . . , un) ∈ E+ and

(i) κ is increasing and convex, then ϕ(x) and Schur-convex on E;

(ii) κ is decreasing and concave, then ϕ(x) and Schur-concave on E.
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Lemma 3.2.3. (Marshall et al. (2011)). Let In be an n−dimensional Euclidean space where In ⊂ Rn. Let

ϕ : In −→ R. Then

(i) (α1, α2, . . . , αn) �w (β1, β2, . . . , βn) implies ϕ(α1, α2, . . . , αn) ≥ (resp. ≤) ϕ(β1, β2, . . . , βn) if, and

only if, ϕ is increasing (resp. decreasing) and Schur-convex (resp. Schur-concave) on In.

(ii) (α1, α2, . . . , αn)
w
� (β1, β2, . . . , βn) implies ϕ(α1, α2, . . . , αn) ≥ (resp. ≤) ϕ(β1, β2, . . . , βn) if, and

only if, ϕ is decreasing (resp. increasing) and Schur-convex (resp. Schur-concave) on In.

Next, we present a Lemma which will be useful to prove some results in the following sections. The proof

follows similar arguments taken from Laniado and Lillo (2014).

Lemma 3.2.4. Let Ḡ(x) = 1−G(x). The function k(θ) =
θ

(Ḡ(x))−θ − 1
is decreasing and convex in θ > 0.

Proof. First, we need to derive k(θ) with respect to θ to show that it’s decreasing. Let Ḡ(x) = 1−G(x).

k′(θ) =
(Ḡ(x))−θ − 1− θ

(
−(Ḡ(x))−θ log

(
Ḡ(x)

))(
(Ḡ(x))−θ − 1

)2
=

(Ḡ(x))2θ
[
(Ḡ(x))−θ − 1 + θ

(
(Ḡ(x))−θ log

(
Ḡ(x)

))]
(Ḡ(x))2θ

[(
(Ḡ(x))−θ − 1

)2]

=
(Ḡ(x))θ

k1(θ)︷ ︸︸ ︷(
1 + θ log

(
Ḡ(x)

)
− (Ḡ(x))θ

)
(
(Ḡ(x))θ − 1

)2 .

For k′(θ) to be negative, we will show that k1(θ) ≤ 0. Observe that, if θ = 0 then k1(θ) = 0.

k′1(θ) = log
(
Ḡ(x)

)
− (Ḡ(x))θ log

(
Ḡ(x)

)
= log

(
Ḡ(x)

) (
1− (Ḡ(x))θ

)
,

as (Ḡ(x)) ∈ (0, 1), log
(
Ḡ(x)

)
it’s not positive. Implies that k(θ) is decreasing.

19



Let us to show the convexity of k(θ):

k′′(θ) =
[
(Ḡ(x))θ log

(
Ḡ(x)

)
(1− (Ḡ(x))θ + θ log

(
Ḡ(x)

)
) + (Ḡ(x))θ(−(Ḡ(x))θ log

(
Ḡ(x)

)
+ log

(
Ḡ(x)

)
)
] [

(Ḡ(x))θ − 1
]2

−
[
2((Ḡ(x))θ − 1)(Ḡ(x))θ log

(
Ḡ(x)

)] [
(Ḡ(x))θ(1 + θ log

(
Ḡ(x)

)
− (Ḡ(x))θ)

]
/
(

(Ḡ(x))θ − 1
)4

= ������(
(Ḡ(x))θ − 1

){[
(Ḡ(x))θ log

(
Ḡ(x)

)
(1− (Ḡ(x))θ + θ log

(
Ḡ(x)

)
) + (Ḡ(x))θ(−(Ḡ(x))θ log

(
Ḡ(x)

)
+ log

(
Ḡ(x)

)
)
] [

(Ḡ(x))θ − 1
]}

{
−
[
2(Ḡ(x))θ log

(
Ḡ(x)

)] [
(Ḡ(x))θ(1 + θ log

(
Ḡ(x)

)
− (Ḡ(x))θ)

]}
/
(

(Ḡ(x))θ − 1
)
�43

=
(Ḡ(x))θ log

(
Ḡ(x)

)
(−θ(Ḡ(x))θ log

(
Ḡ(x)

)
+ 2(Ḡ(x))θ − 2− θ log

(
Ḡ(x)

)
)(

(Ḡ(x))θ − 1
)3

= −
(Ḡ(x))θ log

(
Ḡ(x)

) l1(θ)︷ ︸︸ ︷[
θ log

(
Ḡ(x)

) (
1 + (Ḡ(x))θ

)
+ 2

(
1− (Ḡ(x))θ

)]
(
(Ḡ(x))θ − 1

)3 .

We need to show that k′′(θ) > 0. As log
(
Ḡ(x)

)
and

(
(Ḡ(x))θ − 1

)3 are not positives, we have to show that

l1(θ) ≤ 0.

l′1(θ) = log
(
Ḡ(x)

) (
1 + (Ḡ(x))θ

)
+
(

(Ḡ(x))θ log
(
Ḡ(x)

)) (
θ log

(
Ḡ(x)

))
+ 2

(
−(Ḡ(x))θ log

(
Ḡ(x)

))
= log

(
Ḡ(x)

)
+ (Ḡ(x))θ log

(
Ḡ(x)

)
+ θ(Ḡ(x))θ

(
log
(
Ḡ(x)

))2 − 2(Ḡ(x))θ log
(
Ḡ(x)

)
= log

(
Ḡ(x)

)
− (Ḡ(x))θ log

(
Ḡ(x)

)
+ θ(Ḡ(x))θ

(
log
(
Ḡ(x)

))2
= log

(
Ḡ(x)

) (
1− (Ḡ(x))θ + θ(Ḡ(x))θ log

(
Ḡ(x)

))
︸ ︷︷ ︸

l2(θ)

.

Given that θ > 0, l2(θ) it’s not increasing in Ḡ(x) ∈ (0, 1) because

∂

∂Ḡ(x)
l2(θ) = θ

(
θ(Ḡ(x))θ−1 log

(
Ḡ(x)

)
+ (Ḡ(x))−1(Ḡ(x))θ

)
− θ(Ḡ(x))θ−1

= θ(Ḡ(x))θ−1
(
θ log

(
Ḡ(x)

)
+ 1
)
− θ(Ḡ(x))θ−1

= θ2(Ḡ(x))θ−1 log
(
Ḡ(x)

)
≤ 0.

Therefore, l2(θ) ≥ 0. According to this, l′1(θ) ≤ 0, this is l1(θ) it’s not increasing in θ > 0, implies l1(θ) ≤ 0.

Here, we obtain the convexity of k(θ).
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3.3 Main Results

In this section, we investigate conditions on the parameters of the EG class with equal and different baseline

distributions in the stochastic comparisons.

Let Xi∼EG(αi, βi, G(·)) and Yi∼EG(γi, δi, G(·)), with i = 1, 2, . . . , n, two sets of independent random

variables in which the baseline distribution G(·) is continuous and common to both sets of random variables.

Let us denote Fn:n(·) and Hn:n(·) the cdfs of Xn:n and Yn:n, respectively.

Therefore

Fn:n(x) =
n∏
i=1

(1− [1−G(x)]αi)βi ,

and

Hn:n(x) =

n∏
i=1

(1− [1−G(x)]γi)δi .

Then, the pdfs are

fn:n(x) =

n∏
i=1

Fi(x)

(
n∑
i=1

r̃i(x)

)
,

and

hn:n(x) =
n∏
i=1

Hi(x)

(
n∑
i=1

s̃i(x)

)
,

where r̃i(x) and s̃i(x) are defined in (3.3) for i = 1, 2, . . . , n.

Now, the reversed failure rate functions of Xn:n and Yn:n, are

r̃n:n(x) = rG(x)
n∑
i=1

αi

(1−G(x))−αi − 1
βi, (3.4)

and

s̃n:n(x) = rG(x)

n∑
i=1

γi

(1−G(x))−γi − 1
δi, (3.5)

respectively, where rG is the reversed failure rate function associated to the baseline distribution function G(·).

Let In be an n−dimensional Euclidean space. Consider the vectors α = (α1, α2, . . . , αn),

β = (β1, β2, . . . , βn), γ = (γ1, γ2, . . . , γn), δ = (δ1, δ2, . . . , δn) in In.

Theorem 3.3.1. LetXi and Yi be two sets of mutually independent random variables withXi∼EG(αi, βi, G(·))

and Yi∼EG(αi, δi, G(·)), i = 1, 2, . . . , n.
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(i) If β �w δ, α ∈ E+, β, δ ∈D or α ∈D+, β, δ ∈ E then Xn:n ≥rhr Yn:n;

(ii) If β
w
� δ, α ∈D+, β, δ ∈D or α ∈ E+, β, δ ∈ E then Xn:n ≤rhr Yn:n.

Proof. From (3.4) and (3.5), Xn:n ≥rhr (≤rhr)Yn:n if

n∑
i=1

αi(
Ḡ(x)

)−αi − 1
βi ≥ (≤)

n∑
i=1

αi(
Ḡ(x)

)−αi − 1
δi.

Let ϕ(β) =
n∑
i=1

uiκ(βi), where κ(βi) = βi and ui =
αi(

Ḡ(x)
)−αi − 1

. Then, we need to study the

Schur-convexity (Schur-concavity) of ϕ.

It is evident that κ is increasing, convex and concave. From Lemma 3.2.4, we know that ui is decreasing in

αi, then α ∈ E+(D+) implies u ∈D+(E+).

Actually, ifα ∈ E+(D+), β, δ ∈D(E) and β
m
� δ thenXn:n ≥rhr Yn:n. Evidently, ϕ(β) is increasing in

βi. Now, from Lemma 3.2.2 (b.i) and Lemma 3.2.1 (a.i), we have that ϕ is Schur-convex, i.e., Xn:n ≥rhr Yn:n.

Analogously, if α ∈D+(E+), β, δ ∈D(E) and β
m
� δ then Xn:n ≤rhr Yn:n. Clearly, ϕ(β) is increasing

in βi, from Lemma 3.2.2 (a.i) and Lemma 3.2.1 (b.i), we obtain that ϕ is Schur-concave, i.e., Xn:n ≤rhr Yn:n.

Table 3.1 displays the cdf, pdf, parameters and supports of baseline distributions of EG class used in the

study, examples and counterexamples.

The next counterexample shows that the result of Theorem 3.3.1 cannot be extended up to lr ordering.

Counterexample 3.3.1. Consider x > 0. Let Xi∼EGBS(αi, βi, G(·)) and Yi∼EGBS(αi, δi, G(·)). If α ∈

D+, β, δ ∈ D, with α = (8, 3.1, 1.3), β = (4.3, 3.2, 2) and δ = (4.4, 3.1, 2), we have in Figure 3.1

X3:3�lrY3:3. Notice that even preserving the majorization β
m
� δ, is not possible to extend the result to

likelihood rate order.
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Figure 3.1: Plot of h3:3/f3:3, with α ∈D+,β, δ ∈D

The next example ilustrate the result of Theorem 3.3.1 when β
w
� δ.

Example 3.3.1. Let x ∈ R. Let Xi and Yi following EG class. Let Xi∼EGGu(αi, βi, G(·)) and

Yi∼EGGu(αi, δi, G(·)) with α = (9, 8, 3) ∈ D+, β = (4.3, 3.1, 2) ∈ D and δ = (4.3, 3.2, 2.2) ∈ D.

We can observe that β
w
� δ. Hence, Xn:n ≤rhr Yn:n as evident from Figure 3.2.
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Figure 3.2: Plot of H3:3/F3:3, with α ∈D+,β, δ ∈D

Now we can ask, what will happen if α supermajorizes γ while the parameters β and δ are equal? The

following theorem answers this question.

Theorem 3.3.2. Let Xi∼EG(αi, βi, G(·)) and Yi∼EG(γi, βi, G(·)) two sets of mutually independent random

variables, with i = 1, 2, . . . , n and G(·) common to both. If α
w
� γ, and α,γ ∈D, β ∈ E+ or α,γ ∈ E,

β ∈D+, then Xn:n ≥rhr Yn:n.

Proof. From (3.4) and (3.5), we know that r̃n:n(x) ≥ s̃n:n(x) if, and only if

ϕ(α) =

n∑
i=1

βiκ(αi) ≥
n∑
i=1

βiκ(γi) = ϕ(γ), where κ(αi) = αi

(Ḡ(x))
−αi−1

.

If α,γ ∈ D, from Lemma 3.2.4, we have that κ(αi) is decreasing and convex, and from Lemma 3.2.1

(b.ii), ϕ(α) is Schur-convex in α whenever β ∈ E+. Thus, if α,γ ∈ D, β ∈ E+ and α
m
� γ then

Xn:n ≥rhr Yn:n. Clearly, ϕ(α) is decreasing in αi, then from Lemma 3.2.3, α,γ ∈ D, β ∈ E+ and α
w
� γ

implies Xn:n ≥rhr Yn:n.

Analogously, if α,γ ∈ E, from Lemma 3.2.4, we know that κ(αi) is decreasing and convex, and from

Lemma 3.2.2 (a.ii), ϕ(α) is Schur-convex in α whenever β ∈ D+. Thus, if α,γ ∈ E, β ∈ D+ and α
m
� γ
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then Xn:n ≥rhr Yn:n. Clearly, ϕ(α) is decreasing, then from Lemma 3.2.3, if α,γ ∈ E, β ∈ D+ and α
w
� γ

then Xn:n ≥rhr Yn:n.

The following counterexample shows that Theorem 3.3.2 does not hold under the conditions β ∈

E+,α,γ ∈D, even α
m
� γ.

Counterexample 3.3.2. Let Xi and Yi be two random variables, with Xi∼EGNH(αi, βi, G(·))

and Yi∼EGNH(γi, βi, G(·)), for α = (0.30, 0.13, 0.08) ∈D, γ = (0.215, 0.215, 0.080) ∈D and

β = (2, 2.2, 3.5) ∈ E+, clearly α
m
� γ. Substituting x > 0 by e−x > 0, implies that F3:3/H3:3 is not

increasing as can be seem in Figure 3.3.
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Figure 3.3: Plot of F3:3/H3:3 for α,γ ∈D and β ∈ E+

Next counterexample shows that it is not possible to extend the result of Theorem 3.3.2 even if α and γ are

ordered in the majorization order sense.

Counterexample 3.3.3. For 0 < x < 1, let Xi∼EGKw(αi, βi, G(·)) and Yi∼EGKw(γi, βi, G(·)) where

α,γ ∈D and β ∈ E+. Let α = (5.2, 3.1, 1), β = (2, 3, 4) and γ = (4.2, 4.1, 1), we notice that α
m
� γ

and X3:3�lrY3:3.
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Figure 3.4: Plot of f3:3/h3:3 for α,γ ∈D and β ∈ E+

The following result establishes that the restrictions on the parameters of Theorem 3.3.2 hold in the next

multiple outlier case.

Theorem 3.3.3. For i = 1, 2, . . . , n, let Xi, Yi be two sets of independent random variables

following multiple outlier EG class, such that Xi∼EG(α, βi, G(·)) and Yi∼EG(γ, βi, G(·)) for

i=1, 2, . . . , p, and Xi∼EG(α∗, β∗i , G(·)) and Yi∼EG(α∗, β∗i , G(·)) for i=p+ 1, p+ 2, . . . , p+ q(= n).

Then (α, α, . . . , α︸ ︷︷ ︸
p

, α∗, α∗, . . . , α∗︸ ︷︷ ︸
q

)
w
� (γ, γ, . . . , γ︸ ︷︷ ︸

p

, α∗, α∗, . . . , α∗︸ ︷︷ ︸
q

), implies Xn:n ≥rhr Yn:n.

Proof. From (3.4) and (3.5), we know that

r̃n:n(x) = r̃G(x)

 p∑
i=1

βiκ(α) +

n∑
i=p+1

β∗i κ(α∗)

 and s̃n:n(x) = r̃G(x)

 p∑
i=1

βiκ(γ) +
n∑

i=p+1

β∗i κ(α∗)

.

Moreover, (α, α, . . . , α︸ ︷︷ ︸
p

, α∗, α∗, . . . , α∗︸ ︷︷ ︸
q

)
w
� (γ, γ, . . . , γ︸ ︷︷ ︸

p

, α∗, α∗, . . . , α∗︸ ︷︷ ︸
q

) if, and only if α ≤ γ and (γ ≤ α∗ or

α∗ ≤ α). Observe that in these cases r̃n:n(x) ≥ s̃n:n(x), consequently Xn:n ≥rhr Yn:n.

Now, we study the likelihood ratio order between maximum statistic orders, following multiple outlier

model.
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Theorem 3.3.4. Let Xi and Yi with i=1, 2, . . . , n, be two sets of mutually independent random variables

following multiple outlier EG class, such that Xi∼EG(α, βi, G(·)) and Yi∼EG(γ, βi, G(·)) for i=1, 2, . . . , p,

Xi∼EG(α∗, β∗i , G(·)) and Yi∼EG(γ∗, β∗i , G(·)) for i=p+ 1, p+ 2, . . . , p+ q(= n). Suppose that α, α∗ ∈D,

γ, γ∗ ∈D and β, β∗ ∈ E+ holds.

Then (α, α, . . . , α︸ ︷︷ ︸
p

, α∗, α∗, . . . , α∗︸ ︷︷ ︸
q

)
m
� (γ, γ, . . . , γ︸ ︷︷ ︸

p

, γ∗, γ∗, . . . , γ∗︸ ︷︷ ︸
q

) implies Xn:n ≥lr Yn:n.

Proof. We need to prove

fn:n(x)

hn:n(x)
=
r̃n:n(x)

s̃n:n(x)

Fn:n(x)

Hn:n(x)
is increasing in x.

Here Fn:n(x)
Hn:n(x) is increasing by Theorem (3.3.2). It is sufficient to show that ψ(x) = r̃n:n(x)

s̃n:n(x) is increasing in

x.

From (4), we obtain

r̃n:n(x) = rG(x)

 pα

[1−G(x)]−α − 1

p∑
i=1

βi +
qα∗

[1−G(x)]−α
∗ − 1

n∑
i=p+1

βi


= rG(x)

pκ(α)

p∑
i=1

βi + qκ(α∗)
n∑

i=p+1

βi

 ,

where κ(α) =
α

(1−G(x))−α − 1
. Thus,

ψ(x) =
pκ(α)

∑p
i=1 βi + qκ(α∗)

∑n
i=p+1 βi

pκ(γ)
∑p

i=1 βi + qκ(γ∗)
∑n

i=p+1 βi
.

Differentiating with respect to x,

ψ′(x)
sign
=

pκ′(α)

p∑
i=1

βi + qκ′(α∗)

n∑
i=p+1

βi

pκ(γ)

p∑
i=1

βi + qκ(γ∗)

n∑
i=p+1

βi


−

pκ(α)

p∑
i=1

βi + qκ(α∗)

n∑
i=p+1

βi

pκ′(γ)

p∑
i=1

βi + qκ′(γ∗)

n∑
i=p+1

βi

 ,

where κ′ is the partial derivate of κ with respect to x.

Then ψ′(x) is increasing if
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pκ′(α)
∑p

i=1 βi + qκ′(α∗)
∑n

i=p+1 βi

pκ(α)
∑p

i=1 βi + qκ(α∗)
∑n

i=p+1 βi
≥
pκ′(γ)

∑p
i=1 βi + qκ′(γ∗)

∑n
i=p+1 βi

pκ(γ)
∑p

i=1 βi + qκ(γ∗)
∑n

i=p+1 βi
,

that is, if the function

Ψ(α,α∗) =
pκ′(α)

∑p
i=1 βi + qκ′(α∗)

∑n
i=p+1 βi

pκ(α)
∑p

i=1 βi + qκ(α∗)
∑n

i=p+1 βi
,

is Schur-Convex in (α,α∗).

Let us denote β =
∑n

i=1 βi, β∗ =
∑n

i=1 β
∗
i , and let κ′(α) = κ(α)φ(α)rG(x) where

φ(α) = − α

1− (Ḡ(x))α
.

Thus, we have

Ψ(α,α∗) = rG(x)
pκ(α)φ(α)β + qκ(α∗)φ(α∗)β∗

pκ(α)β + qκ(α∗)β∗
.

On differentiating Ψ(α,α∗) with respect to α, and let φ1(α) = κ(α)φ′(α), we obtain

∂Ψ

∂α
= rG(x)

[pκ′(α)φ(α)β + pκ(α)φ′(α)β] [pκ(α)β + qκ(α∗)β∗]− [pκ′(α)β] [pκ(α)φ(α)β + qκ(α∗)φ(α∗)β∗]

(pκ(α)β + qκ(α∗)β∗)
2

= p

(
rG(x)

[qκ′(α)βκ(α∗)β∗ {φ(α)− φ(α∗)}+ κ(α)φ′(α)β {pκ(α)β + qκ(α∗)β∗}]
(pκ(α)β + qκ(α∗)β∗)

2

)

= p

(
rG(x)

[qκ′(α)βκ(α∗)β∗ {φ(α)− φ(α∗)}+ φ1(α)β {pκ(α)β + qκ(α∗)β∗}]
(pκ(α)β + qκ(α∗)β∗)

2

)
.

With a similar expression for α∗, and let φ1(α∗) = κ(α∗)φ′(α∗), we have

∂Ψ

∂α∗
= rG(x)

[qκ′(α∗)φ(α∗)β∗ + qκ(α∗)φ′(α∗)β∗] [pκ(α)β + qκ(α∗)β∗]− [qκ′(α∗)β∗] [pκ(α)φ(α)β + qκ(α∗)φ(α∗)β∗]

(pκ(α)β + qκ(α∗)β∗)
2

= q

(
rG(x)

[pκ′(α∗)β∗κ(α)β {φ(α∗)− φ(α)}+ κ(α∗)φ′(α∗)β∗ {qκ(α∗)β∗ + pκ(α)β}]
(pκ(α)β + qκ(α∗)β∗)

2

)

= q

(
rG(x)

[pκ′(α∗)β∗κ(α)β {φ(α∗)− φ(α)}+ φ1(α∗)β∗ {qκ(α∗)β∗ + pκ(α)β}]
(pκ(α)β + qκ(α∗)β∗)

2

)
.
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Hence arise:

∂Ψ

∂α
− ∂Ψ

∂α∗
= p

(
rG(x)

[qκ′(α)βκ(α∗)β∗ {φ(α)− φ(α∗)}+ φ1(α)β {pκ(α)β + qκ(α∗)β∗}]
(pκ(α)β + qκ(α∗)β∗)2

)
−q
(
rG(x)

[pκ′(α∗)β∗κ(α)β {φ(α∗)− φ(α)}+ φ1(α∗)β∗ {qκ(α∗)β∗ + pκ(α)β}]
(pκ(α)β + qκ(α∗)β∗)2

)
sign
=

[
{φ(α)− φ(α∗)}

{
pqκ′(α)βκ(α∗)β∗ + qpκ′(α∗)β∗κ(α)β

}]
+

[{pκ(α)β + qκ(α∗)β∗} {pφ1(α)β − qφ1(α∗)β∗}] . (3.6)

Now, φ is decreasing with respect to α, and κ′ ≤ 0, observe that the first bracketed term of (3.6) is not

negative. Note that, the second bracketed term of (3.6) also is positive, thus φ1, is increasing, it follows that
∂Ψ
∂α −

∂Ψ
∂α∗ ≥ 0. Thus, Ψ is Schur convex in α. Hence, α

m
� γ implies ψ ≥ 0, proving the result.

We have the following example which verify the conditions of the result given in the previous theorem.

Example 3.3.2. Let Xi, Yi following the EGF. Also, let α = 1.2, α∗ = 2.3, with (p, q) = (4, 3), β = 3.9,

β∗ = 2.1, γ = 1.5, γ∗ = 1.74, and (p, q) = (2, 5). Based on the Figure 3.5 observe that Xn:n ≥lr Yn:n,

(α, α, . . . , α︸ ︷︷ ︸
p

, α∗, α∗, . . . , α∗︸ ︷︷ ︸
q

)
m
� (γ, γ, . . . , γ︸ ︷︷ ︸

p

, γ∗, γ∗, . . . , γ∗︸ ︷︷ ︸
q

).

The following theorems show what happens when we have two different baselines in class EG and we

established conditions on the parameters. The results are given in the usual stochastic order and our study

reveals the following.

Let X and Y two random variables with G1(·) and G2(·) continous cdf, respectively. Let

Xi∼EG(αi, βi, G1(·)) and Yi∼EG(γi, δi, G2(·)) two sets of mutually independent random variables and

i=1, 2, . . . , n.

Theorem 3.3.5. Let Xi and Yi be two sets of mutually independent random variables. Xi∼EG(αi, βi, G1(·))

and Yi∼EG(γi, βi, G2(·)) with i=1, 2, . . . , n. Suppose that α,γ ∈ E and β ∈D+ or α,γ ∈D and β ∈ E+

with α
m
� γ, then X ≥st Y implies Xn:n ≥st Yn:n.

Proof. Considering Zi∼EG(γi, βi, G1(·)) another random variable. By the Theorem 3.3.2 we can see that

α,γ ∈ E and β ∈D+ withα
w
� γ, thenXn:n ≥rhr Zn:n which impliesXn:n ≥st Zn:n. Let Ḡ(·) = 1−G(·).

Then by using Definition 3.2.2,
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Figure 3.5: Plot of Likelihood ratio for f(4,3)/h(2,5)

n∏
i=1

1− [1− {1−G1(·)}αi ]βi ≥
n∏
i=1

1− [1− {1−G1(·)}γi ]βi , (3.7)

n∏
i=1

[1− {1−G1(·)}αi ]βi ≤
n∏
i=1

[1− {1−G1(·)}γi ]βi .

Now, X ≥st Y implies Ḡ1(·) ≥ Ḡ2(·), that is

[
1−

{
Ḡ1(·)

}γi]βi ≤ [
1−

{
Ḡ2(·)

}γi]βi ,
n∏
i=1

1−
[
1−

{
Ḡ1(·)

}γi]βi ≥ n∏
i=1

1−
[
1−

{
Ḡ2(·)

}γi]βi . (3.8)

So, from equation (3.7) and (3.8)

n∏
i=1

1−
[
1−

{
Ḡ1(·)

}αi]βi ≥ n∏
i=1

1−
[
1−

{
Ḡ1(·)

}γi]βi ≥ n∏
i=1

1−
[
1−

{
Ḡ2(·)

}γi]βi ,
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implying Xn:n ≥st Yn:n.

Theorem 3.3.6. Let Xi and Yi be two sets of mutually independent random variables with

Xi∼EG(αi, βi, G1(·)) and Yi∼EG(αi, δi, G2(·)) with i=1, 2, . . . , n. If β
m
� δ and

(i) α ∈ E+, β, δ ∈D or α ∈D+, β, δ ∈ E then X ≥st Y implies Xn:n ≥st Yn:n;

(ii) α ∈D+, β, δ ∈D or α ∈ E+, β, δ ∈ E then X ≤st Y implies Xn:n ≤st Yn:n.

Proof. Let us consider the random variable Zi as defined in Theorem 3.3.5, by Theorem 3.3.1 and the same

process from Theorem 3.3.5 the desired results follow immediately.

3.4 A Possible Application

In this section similar as Kayal (2019), without loss of generality a possible application of the theoretical results

is provided. Suppose there are parallel systems consisting of n components in a motor Boeing, commonly used

in reliability theory. The components are assumed to function independently. The system components works

if at least one of the components works. The failure times of the components could assumed to follow the EG

class. We are interested to compare the performance of the parallel systems stochastically considering the EG

class.

As an application, we could see the operation of two Boeing engines, because they work as par-

allel systems and verify the power and the life time in their operation, see Figure 3.6 and Figure 3.7

(source:https://br.pinterest.com/AyameDesign/industrial). Theorem 3.3.2 guarantees that, for parallel systems

of components following the EG class distribution with a common β shape parameter, the weakly majorized

parameter α leads to a longer system life in the sense of the order of the reversed hazard rate when the shape

parameter is increasing.

Here, we consider the complex operation of a motor Boeing. Obviously, the operation of that depends on

multiple components, but it serves to illustrate how the results could be applied in this field. For the purposes of

this thesis, the numerical application escapes from our hands because many tools are needed for a more applied

part.
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Figure 3.6: Motor Boeing Figure 3.7: Part of Motor Boeing

3.5 Conclusion and Future Works

In this research, we studied stochastic comparisons of parallel system formed by components having indepen-

dent lifetimes, based on the Exponentiated Generalized class. In the results, we use the theory of majorization

and stochastic order. We derive some conditions under the parameters to give some results to respect reversed

hazard rate and stochastic order. Also, for the case of multiple outlier we have results comparing by the same

baseline. In addition of the examples to illustrate the research, we had the caution of showed some failure

through counterexamples. For future works, we recommend to study the possible fields of application and

apply the results to real databases in reliability or other areas. Also, to study the majorization theory in other

distribution functions.
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Chapter 4

Inferential Results For Transmuted Inverse

Weibull Distribution

Abstract
Different measures of Goodness-of-Fit yield information to describe the fits of models to the data. This

research constructed qualitative and quantitative fit measures for Transmuted Inverse Weibull distribution. To

develop these Goodness-of-Fit measures, we study some properties of that distribution: we present the Mellin

Transform, Log-Moments, and Log-Cumulants. Then, we discuss estimation methods for the model’s param-

eters, such as Moments, Maximum Likelihood, and the one based on the Log-Cumulants method. The last

method mentioned is proposed to estimate the parameters of the distribution. The model is applied to three

survival datasets to verify the quality of our estimation methods and Goodness-of-Fit measures.

Keywords: Parameter Estimation, Log-Cumulants, Goodness-of-Fit, Confidence Ellipse.

4.1 Introduction

Lifetime probability distributions has been used in different context such as reliability (Kececioglu, 2002;

Meeker et al., 2021), life data (Lee et al., 2007), modelling failure and engineering (Pescim et al., 2013), among

others. Researchers generally introduce parameters or/and generators to obtain more new/flexible models. In

this chapter, we use a distribution that provides a particular transmuting function for constructing tractable

models.

The Weibull distribution was introduced by Weibull et al. (1951) and also mentioned in Rinne (2008). This

distribution is mainly used in quality control Nelson (1979) and studied in Hallinan Jr (1993), reliability and
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applied statistic (Nelson, 1985; Ambrožič and Gorjan, 2011), and hidrology (Singh, 1987; Saboor et al., 2016),

among others. Nevertheless, in some situations which it is not possible to fit simple models to the data, it is

necessary to create new models that supply this fact, by adding parameters or base distribution, to guarantee

the flexibility of the model and better fits.

Keller et al. (1982) derived four alternative failure models based on physical considerations, particularly

the two-parameter model known as the Inverse Weibull model. Such distribution plays an essential role in

modeling failure rates which are extremely important in biological, reliability, and survival analysis studies.

Subsequently, some works generalize or modify the inverse Weibull, for example, De Gusmao et al. (2011),

Khan and King (2012), Khan and King (2016) and Jan et al. (2017).

An excellent idea of a generalization model where the distribution is derived using the quadratic rank

transmutation map is intended to motivate our investigation; it was giving by Shaw and Buckley (2009). In this

context, Khan and King (2014) introduce the three-parameter Transmuted Inverse Weibull (TIW) distribution,

evidencing the Transmuted Inverse Exponential, Transmuted Inverse Rayleigh and Inverse Weibull distributions

as sub-models.

Merovci et al. (2013) created a New Generalized Inverse Weibull distribution. Al-Omari (2018) developed

new acceptance sampling plan based on the Transmuted Generalized Inverse Weibull distribution. AL-Kadim

and Mohammed (2017) proposed a cubic Transmuted Weibull distribution and discuss some submodels or

special cases chosen particular parameters values and giving theoretical results.

Recently, Rahman et al. (2020) studied a detailed review of the transmuted families of distributions and

Dey et al. (2021) reviewed a complete list of transmuted distributions.

Now, let us mention the Mellin Transform (MT); it surges in a mathematical context, the Finnish mathe-

matician R.H.Mellin (1854-1933) was the first to formulate that, and it has been applied in different fields of

engineering. Butzer and Jansche (1997) show an application to the partial differential equations as a particular

use of the differential properties. Nicolas (2002) presents an interesting application based on graphic represen-

tation using Log-Cumulants (LC) of order two and three which leads to graph the LC diagram. Recently, Jain

et al. (2021) introduce a study that they called a (p, q)-Mellin transform and its corresponding convolution and

inversion. They solve some integral equations in terms of applications of the (p, q)-Mellin transform.

So far, no developed measures of Goodness-of-Fit (GoF) have been applied to the TIW distribution, making

it difficult to select this model in some cases. Finally, there are different techniques in the literature to fit the

models by using criteria and measures for different distributions, known as GoF. In this line, Pearson (1895)

provides an excellent tool for choosing a model known as the Pearson diagram, which uses skewness and
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kurtosis. However, Nicolas (2002) considered this method sometimes analytically intractable. Hence, build the

LC diagram for some classical models illustrate SAR image data. Vasconcelos et al. (2021) recently constructed

LC diagrams and derived confidence ellipses for the LC for the beta-G class based on Hotelling’s T 2 statistic.

In this thesis, we study the MT to aim to establish new GoF measures for the TIW distribution and compare

the Maximum Likelihood, Moments, and LC estimates. Using the T 2 statistic and the confidence ellipses for

hypothesis testing, we illustrate the performance of the measures treated in some datasets.

This work, aims to give some inferential results by using new GoF method. To accomplish this, we provide

a study specially of the MT, LC and Log-Moments. The Chapter is organized as follows: Section 4.2 presents a

brief overview of TIW distribution and also the theory of parameters estimation. Section 4.3 proposes a second

kind statistic for the TIW distribution. Section 4.4 offers Log-Cumulants and T 2 statistic. Section 4.5 a brief

simulation. Section 4.6 shows an application to real dataset and finally, Section 4.7 presents the conclusions.

4.2 Transmuted Inverse Weibull distribution

In this section, let us introduce some aspects of how the TIW could be created.

A random variable Y is said to follow a Weibull distribution (Weibull et al., 1951; Rinne, 2008) with

parameters β > 0 and η > 0, the scale and shape parameters, respectively, if its CDF and PDF are,

GY (y) = 1− e
−
(
y
β

)η
and gY (y) = η

β

(
y
β

)η−1
e
−
(
y
β

)η
, y ≥ 0.

Let Z be a random variable following Inverse Weibull distribution, say Z ∼ IW (z;β, η), with parameters

β > 0 and η > 0, the scale and shape parameters, respectively. The CDF and PDF, respectively, are given by

(Keller et al., 1982), see also Khan et al. (2008):

GZ(z) = e
− 1
η ( 1

z )
β

, and gZ(z) =
(
β
η

) (
1
z

)β+1
e
− 1
η ( 1

z )
β

, z > 0.

Transmutation is the functional composition of the CDF of one distribution with the inverse cumulative

distribution function (quantile function) of another (Rahman et al., 2020). A random variable W is said to

follow transmuted distribution, see (Shaw and Buckley, 2009), if its CDF is given by

FW (w) = (1 + λ)G(w)− λG(w)2, |λ| ≤ 1, (4.1)

where λ offers more flexibility in the distribution and G(w) is the CDF of the baseline distribution.
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Finally, this distribution arises like a new reliability model. From (4.1), a random variable X is said to

follow the TIW distribution denoted by, X ∼ TIW (x;β, η, λ) if the CDF and PDF of X are given by

FX(x) = (1 + λ) e
− 1
η ( 1

x)
β

−λ
(

e
− 1
η ( 1

x)
β
)2

,

fX(x) =

(
β

η

)(
1

x

)β+1

e
− 1
η ( 1

x)
β
(

1 + λ− 2λ e
− 1
η ( 1

x)
β
)
, x > 0.

Where β, η > 0, and |λ| ≤ 1, the shape, scale and transmuting parameters, respectively (Khan and King, 2014).

Figure 4.1 illustrates the flexibility of the CDF and PDF for selected parameter values. Note that, when

λ = 0.04 the density is a monotonic function and when β > 1.5 becomes unimodal. When x tends to infinity

the density tends to zero. Now, when λ is close to 1 has a leptokurtic form already in the case of λ < 1 as it

decreases has a platykurtic shape.
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Figure 4.1: Transmuted Inverse Weibull CDF (a) and PDF (b) for different values of β, η, λ

Using u a random number from zero to one. The quantile function from TIW, by solving FX(x) ≤ u is

x =

(
−η log

(
(1 + λ)−

√
(1 + λ)2 − 4λu

2λ

))−1
β

,
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step by step, the equation above is

FX(x) = u

(1 + λ) e
−x
−β
η −λ

(
e
−x
−β
η

)2

= u

4(1 + λ)λ e
−x
−β
η −4λ2

(
e
−x
−β
η

)2

4λ
= u

(1 + λ)2 − (1 + λ)2 + 4(1 + λ)

(
λ e
−x
−β
η

)
− 4λ2

(
e
−x
−β
η

)2

= 4λu

(1 + λ)2 − 4(1 + λ)

(
λ e
−x
−β
η

)
+ 4λ2

(
e
−x
−β
η

)2

= (1 + λ)2 − 4λu(
(1 + λ)− 2λ e

−x
−β
η

)2

= (1 + λ)2 − 4λu

(1 + λ)− 2λ e
−x
−β
η =

√
(1 + λ)2 − 4λu

(1 + λ)−
√

(1 + λ)2 − 4λu

2λ
= e

−x
−β
η

−η log

(
(1 + λ)−

√
(1 + λ)2 − 4λu

2λ

)
= x−β

(
−η log

(
(1 + λ)−

√
(1 + λ)2 − 4λu

2λ

))− 1
β

= x.

Using u = 0.5, we obtain the median of the TIW distribution. In practice, this is the life at which at least

50% of the units will be expected to fail.

The r-th moment from X ∼ TIW (x;β, η, λ) is given as follows

E (Xr) = η
− r
β Γ

(
1− r

β

)(
1 + λ− λ2

r
β

)
, (4.2)

where Γ(·) is the Gamma function.

To estimate the parameters of TIW distribution, we present in this section two methods: the Maximum

Likelihood and Moments.
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4.2.1 Method of Maximum Likelihood (ML)

Let X1, X2, . . . , Xn be a random sample from X ∼ TIW (x;β, η, λ). The likelihood function is

L(β, η, λ;xi) =
n∏
i=1

β

η

(
1

xi

)β+1

e
− 1
η

(
1
xi

)β (
1 + λ− 2λ e

− 1
η

(
1
xi

)β)
, (4.3)

where xi, i = 1, 2, . . . , n are the observed values of the random sample.

To estimate the parameters, we find the set of values of β, η and λ that attains their maximum in (4.3).

The associated log-likelihood function of (4.3) is

`(β, η, λ;xi) = n log
β

η
+ (β + 1)

n∑
i=1

log

(
1

xi

)
−

n∑
i=1

1

η

(
1

xi

)β
+

n∑
i=1

log

(
1 + λ− 2λ e

− 1
η

(
1
xi

)β)
. (4.4)

The values of β̂, η̂ and λ̂ that maximize (4.4) will be the ML estimates for the parameters β, η and λ. The

ML estimates are obtained by numerical methods using the optim function, BFGS method and BB package

(Varadhan and Gilbert, 2010) in the software R Core Team (Team et al., 2013). The corresponding components

of the score vector S, by taking the partial derivates of (4.4) can be written as

S = (Sβ, Sη, Sλ) =

(
∂

∂β
`(β, η, λ;xi),

∂

∂η
`(β, η, λ;xi),

∂

∂λ
`(β, η, λ;xi)

)
,

where

∂

∂β
`(β, η, λ;xi) =

n

β
+ 2

n∑
i=1

λ
(

1
xi

)β
log
(

1
xi

)
e
−
(

1
η

)(
1
xi

)β

η

(
λ− 2λ e

− 1
η

(
1
xi

)β
+1

) − 1

η

n∑
i=1

(
1

xi

)β
log

(
1

xi

)
+

n∑
i=1

log

(
1

xi

)
,

∂

∂η
`(β, η, λ;xi) = −n

η
− 2

n∑
i=1

λ
(

1
xi

)β
e
−
(

1
η

)(
1
xi

)β

η2

(
λ− 2λ e

− 1
η

(
1
xi

)β
+1

) +
1

η2

n∑
i=1

(
1

xi

)β
,

∂

∂λ
`(β, η, λ;xi) =

n∑
i=1

1− 2 e
−
(

1
η

)(
1
xi

)β
λ− 2λ e

−
(

1
η

)(
1
xi

)β
+1

.

Remark 4.2.1. We consider that there is an error when writing the partial derivative of λ in Khan and King

(2014) page 281, equation (36).
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4.2.2 Method of Moments (MM)

The method of moments, is an estimation method of population parameters. It involves equaling sample mo-

ments with theoretical moments. Let X1, X2, . . . , Xn be a random sample from X ∼ TIW (x;β, η, λ). For

r > 0 integer, the r-th sample moment is the random variable

E(Xr) =
1

n

n∑
i=1

Xr
i .

Thus, for r = 1, 2, 3 in (4.2) and solving by numerical methods these equations, we can obtain the MM

estimates. The dfsane function, BFGS method and BB package were used in the software R Core Team (Team

et al., 2013).

4.3 Second kind statistic for the TIW distribution

In this section, we present one of our results for TIW distribution based on the Mellin Transform. The next, we

will review some results from literature and then present the new results for TIW distribution.

4.3.1 Mellin Transform

The Mellin Transform relates to Laplace and Fourier transforms, and has been applied in different engineering

fields (Bertrand et al., 1995). Let X be a random variable and F (x) a function defined in real line to [0, 1]. The

first characteristic function of the second kind is defined as the MT, denoted by φX(s) (Epstein, 1948; Nicolas,

2002)

φX(s) =

∫ ∞
0

xs−1dF (x) = E
(
Xs−1

)
. (4.5)

Generally, the above integral does exist only for s = a+ bj, with a, b ∈ R and j the imaginary number.

The second characteristic function of the second kind, denoted by ϕX(s), is defined as the natural logarithm

of (4.5)

ϕX(s) = log (φX(s)) . (4.6)

With this we motivation to formulate the next results.

Theorem 4.3.1. Let X be a random variable following TIW distribution, X ∼ TIW (x;β, η, λ). The MT of X
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is given by

φX(s) = η
− s−1

β Γ

(
1− s− 1

β

)(
1 + λ− λ2

s−1
β

)
. (4.7)

The proof of Theorem 4.3.1 follows immediately from (4.2) and (4.5).

4.3.2 Log-Cumulants

There is a closely related between Log-Moments (LM) and LC. Now, we show LM are derived from MT

similarly that the moments are obtained from the characteristic function.

Nicolas (2002) defines ∀r ∈ N, the r-th LM or second-kind moment of the MT as following

µ̃r =
drφX
dsr

(s)

∣∣∣∣∣
s=1

=

∫ ∞
0

(log x)rdF (x) = E ((logX)r) .

The r-th LC is obtained from derivative of (4.6) and then by evaluating the function at s = 1,

κ̃r =
drϕX(s)

dsr

∣∣∣∣∣
s=1

. (4.8)

Thus, the expressions for the first three cases and based on Anfinsen and Eltoft (2011) the r-th LC are given by

κ̃1 = µ̃1,

κ̃2 = µ̃2 − µ̃2
1,

κ̃3 = µ̃3 − 3µ̃1µ̃2 + 2µ̃3
1, (4.9)

...

κ̃r = µ̃r −
r−1∑
i=1

(
r − 1

i− 1

)
κ̃iµ̃r−i,

where µ̃r can be replace by (Nicolas, 2006)

ˆ̃µr =
1

n

n∑
i=1

(log xi)
r , (4.10)

here, n is the sample size and xi indicates the i-th sample observation.

In Table 4.1, for X ∼ TIW (x;β, η, λ) we present the first six theoretical LC, where the polygamma func-

tion of order n, Ψ(n)(x) = dn+1

dxn+1 log Γ(x) is the (n+ 1)-th derivative of the logarithm of the gamma function.
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Thus, the ϕX(s) function for TIW distribution can be written as

ϕX(s) = (1− s) 1

β
log(η) + log

(
Γ

(
1− s− 1

β

))
+ log

(
1 + λ− λ2

s−1
β

)
. (4.11)

LC −1 < λ < 1

κ̃1 − 1
β

[
log(η) + λ log(2) + Ψ(0)(1)

]
κ̃2 − 1

β2

[
λ log2(2)(λ+ 1)−Ψ(1)(1)

]
κ̃3 − 1

β3

[
λ log3(2)

(
2λ2 + 3λ+ 1

)
+ Ψ(2)(1)

]
κ̃4 − 1

β4

[
λ log4(2)

(
6λ3 + 12λ2 + 7λ+ 1

)
−Ψ(3)(1)

]
κ̃5 − 1

β5

[
λ log5(2)

(
24λ4 + 60λ3 + 50λ2 + 15λ+ 1

)
+ Ψ(4)(1)

]
κ̃6 − 1

β6

[
λ log6(2)

(
120λ5 + 360λ4 + 390λ3 + 180λ2 + 31λ+ 1

)
−Ψ(5)(1)

]
Table 4.1: The first six Log-Cumulants of the TIW distribution

4.4 Estimation and GoF for the TIW distribution

4.4.1 Method of Log-Cumulants

In a similar way to Subsection 4.2.2, the proposed estimation method consists in equaling sample version LC

in (4.10) with theoretical LC according to (4.9) as follow

− 1

β̂

[
log(η̂) + λ̂ log(2) + Ψ(0)(1)

]
= ˆ̃µ1,

− 1

β̂2

[
λ̂ log2(2)(λ̂+ 1)−Ψ(1)(1)

]
= ˆ̃µ2 − ˆ̃µ2

1,

− 1

β̂3

[
λ̂ log3(2)

(
2λ̂2 + 3λ̂+ 1

)
+ Ψ(2)(1)

]
= ˆ̃µ3 − 3ˆ̃µ1

ˆ̃µ2 + 2ˆ̃µ3
1,

such that

β̂ =
3

√√√√ λ̂
(

2λ̂2 + 3λ̂+ 1
)

log3(2) + Ψ(2)(1)

− ˆ̃µ3 + 3ˆ̃µ1
ˆ̃µ2 − 2ˆ̃µ3

1

,

η̂ = e−β̂
ˆ̃µ1−λ̂ log(2)−Ψ(0)(1),

λ̂ =

√
4
[
−β̂2

(
ˆ̃µ2 − ˆ̃µ2

1

)
−Ψ(1)(1)

]
−
√

log2(2)

2
√

log2(2)
.

Remark 4.4.1. An advantage of this method is that there is an expression in closed form. This does not happen
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in the above methods. Thus, the system is solved by non-linear optimization methods.

This study was carried out by using the BB and MaxLik packages (Varadhan and Gilbert, 2010) and (Hen-

ningsen and Toomet, 2011), also by using BBsolve, maxBFGS functions avaliables in the software R Core

Team.

4.4.2 The Log-Cumulant Diagram

Let us start this section mention that the Pearson system of distributions was presented by Delignon et al. (1997).

It helps in the model selection and choosing the best fit for the data based on kurtosis and skewness measures.

Nevertheless, Nicolas (2002) showed that the Pearson diagram sometimes could be complex in treating positive

random variables and introduced the (κ̃3, κ̃2) diagram, which uses the second statistics κ̃3 and κ̃2 rather than

kurtosis and skewness measures.

There are different representations into the diagram, which is due to the number of parameters contained in

LC expressions (Anfinsen and Eltoft, 2011). Hence, when there is no parameter in LC expressions, there is a

zero-dimensional space; one parameter in LC is represented by a curve and a surface for two parameters.

Figure 4.2 displays the 2-dimensional space, where each dimension represents the third-order LC versus the

second-order LC, referring to the TIW distribution. Here, we can plot the region obtained from the theoretical

LC estimated. In the application section 4.6, the points representing the sample LC will be computed using a

bootstrap method from data samples and graphed over the (κ3, κ2) diagram.
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Figure 4.2: Diagram of Log-Cumulants showing the dimensional space of theoretical LC for the TIW distribu-
tion

4.4.3 Hotelling’s Statistic

By the multivariate central limit theorem we know that for larger samples sizes,
√

n
(
X̄− µ

) approx∼ N (0,Σ),

and the covariance matrix follows a chi-square distribution with ν degrees of freedom, denoted by

Σ = n
(
X̄− µ

)>
S−1

(
X̄− µ

) approx∼ χ2
ν , where µ is the mean vector, X̄ is the sample mean vector and S

is the sample covariance matrix.

Now, the t-student distribution is used for small samples sizes. We can write t = X̄−µ
s/
√
n

, as

T =
√
n
(
X̄− µ

)
S−1. If we take square to both terms, we obtain

T 2 = n
(
X̄− µ

)>
S−1

(
X̄− µ

)
. (4.12)

In this case, (4.12) will be Hotelling’s T 2 statistic (Anderson, 1962; Hotelling, 1992). T 2 follows the

F -Snedecor distribution with ν, n− ν degrees of freedom denoted by T 2 ∼ Fν,n−ν .

Let us consider the next hypothesis testing:

H0 := E
(
X̄
)

= µ vs H1 := E
(
X̄
)
6= µ. (4.13)

Assume the null hypothesis H0 true and a significance level α. The likelihood ratio test does not reject H0,
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will be T 2 ≤ Q(1− α; ν, n− ν), where Q(•; ν, n− ν) is the quantile function for Fν;n−ν (Anderson, 1962).

We aim to find the Hotelling’s T 2 statistic to provide GoF tests using LC. Thus, we pretend to estimate the

LC to identify the underlying distribution according to the location of the LC estimated
[
ˆ̃κ2

ˆ̃κ3

]
over the LC

diagram (Vasconcelos et al., 2021).

An equivalent formulation of (4.13) will be needed

H0 := E
([

ˆ̃κ2
ˆ̃κ3

])
=
[
κ̃2 κ̃3

]
vs H1 := E

([
ˆ̃κ2

ˆ̃κ3

])
6=
[
κ̃2 κ̃3

]
.

To reject or not the null hypothesis depends on the belonging of the LC estimated over the specific regions

into the LC diagram (Anfinsen et al., 2011).

Thus, T 2 converges in distribution to a random variable following a chi-squared distribution with ν degrees

of freedom

T 2 = n

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

> K̂−1

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

 D−→ χ2
2,ν ,

where K̂ is the asymptotic covariance matrix and P
(
T 2 ≤ χ2

2,ν

)
= 1− ν.

Proposition 4.4.1. Let X be a random variable following TIW distribution, X ∼ TIW (x;β, η, λ). The T 2

statistic based on LC Estimated is given by

T 2 =
nβ6

τ̂33τ̂22 − τ̂2
23

[
τ̂33

(
ˆ̃κ2 − κ̃2

)2
+ τ̂22

(
ˆ̃κ3 − κ̃3

)2
− 2τ̂23

(
ˆ̃κ2 − κ̃2

)(
ˆ̃κ3 − κ̃3

)]
.

The proof of Proposition 4.4.1 and the algorithm to calculate T 2 is in Appendix, Section 4.8.

4.4.4 Ellipse Confidences

As a similar way than subsection 4.4.3, if µ is the mean of the normal multivariate distribution, that is, N (µ,Σ),

the probability is 1− α of drawing a sample of the population with mean X̄ and covariance matrix S such that

n
(
X̄− µ

)>
S−1

(
X̄− µ

)
≤ T2(α). (4.14)

Thus, if we compute 4.14 for a particular sample, we have confidence 1 − α that 4.14 is a true statement

concerning µ (Anderson, 1962).
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The inequality

n

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

> K̂−1

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

 ≤ T 2(α),

is the interior and boundary of an ellipsoid of [κ̃2, κ̃3]>, with center at
[
ˆ̃κ2, ˆ̃κ3

]>
and with size and shape

depending on K̂−1 and α.
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4.5 Simulation Study

We present a brief simulation study to verify the performance of the estimators. We use the ML, MM and LC

methods for parameter estimation. Some scenarios with different sample sizes are shown in Table 4.2.

n (β, η, λ) MM ML LC
β̂ η̂ λ̂ β̂ η̂ λ̂ β̂ η̂ λ̂

30 (2, 2, 0.9) Mean 2.903 4.306 0.818 2.509 3.803 0.772 2.414 3.554 0.882
Bias 0.903 2.306 -0.082 0.509 1.803 -0.128 0.414 1.554 -0.018
MSE 1.662 48.876 0.268 0.975 40.529 0.132 1.111 14.901 0.131

50 2.590 2.880 0.895 2.236 2.747 0.755 2.163 2.997 0.810
0.590 0.880 -0.005 0.236 0.747 -0.145 0.163 0.997 -0.090
0.807 4.865 0.194 0.277 3.118 0.138 0.468 9.312 0.165

80 2.498 2.576 0.926 2.179 2.582 0.767 2.104 2.731 0.812
0.498 0.576 0.026 0.179 0.582 -0.133 0.104 0.731 -0.088
0.625 2.996 0.183 0.188 2.062 0.129 0.334 6.250 0.166

100 2.409 2.348 0.965 2.139 2.490 0.768 2.097 2.707 0.779
0.409 0.348 0.065 0.139 0.490 -0.132 0.097 0.707 -0.121
0.516 2.049 0.171 0.129 1.535 0.127 0.280 5.275 0.180

30 (9, 3.2,−0.9) 10.662 2.304 -0.281 9.303 1.952 -0.046 9.492 1.960 -0.057
1.662 -0.896 0.619 0.303 -1.248 0.854 0.492 -1.240 0.843
12.729 2.206 1.029 8.271 2.230 1.379 10.572 2.426 1.313

50 9.908 2.668 -0.551 9.079 2.542 -0.481 9.286 2.538 -0.473
0.908 -0.532 0.349 0.079 -0.658 0.419 0.286 -0.662 0.427
4.538 1.260 0.506 2.256 1.026 0.568 3.738 1.126 0.541

80 9.703 2.836 -0.653 9.095 2.723 -0.601 9.246 2.746 -0.602
0.703 -0.364 0.247 0.095 -0.477 0.299 0.246 -0.454 0.298
3.143 1.067 0.365 1.360 0.703 0.347 2.518 0.826 0.337

100 9.485 2.981 -0.742 9.110 2.895 -0.713 9.174 2.960 -0.732
0.485 -0.219 0.158 0.110 -0.305 0.187 0.174 -0.240 0.168
1.897 0.898 0.250 0.663 0.437 0.170 1.398 0.593 0.178

30 (3, 2,−0.7) 4.334 2.209 -0.175 3.447 1.988 -0.573 3.812 2.088 -0.619
1.334 0.209 0.525 0.447 -0.012 0.127 0.812 0.088 0.081
4.624 15.403 4.930 1.226 0.739 0.199 2.186 1.277 0.113

50 3.722 2.159 -0.050 3.080 2.106 -0.720 3.264 2.134 -0.717
0.722 0.159 0.650 0.080 0.106 -0.020 0.264 0.134 -0.017
1.935 3.172 7.380 0.231 0.294 0.096 0.559 0.627 0.120

80 3.592 2.118 -0.129 3.016 2.133 -0.756 3.157 2.133 -0.736
0.592 0.118 0.571 0.016 0.133 -0.056 0.157 0.133 -0.036
1.442 2.989 3.730 0.119 0.222 0.072 0.324 0.494 0.113

100 3.497 2.085 -0.252 2.980 2.145 -0.769 3.083 2.134 -0.743
0.497 0.085 0.448 -0.020 0.145 -0.069 0.083 0.134 -0.043
1.073 2.180 2.396 0.060 0.173 0.059 0.175 0.392 0.103

30 (1.5, 0.5, 0.04) 1.499 1.310 0.613 1.655 0.462 0.212 2.102 0.519 0.383
-0.001 0.810 0.573 0.155 -0.038 0.172 0.602 0.019 0.343
0.001 1.504 41.762 0.301 0.032 0.251 0.947 0.064 0.278

50 1.494 0.939 0.730 1.465 0.473 0.253 1.730 0.552 0.282
-0.006 0.439 0.690 -0.035 -0.027 0.213 0.230 0.052 0.242
0.000 0.546 55.592 0.082 0.017 0.264 0.268 0.026 0.269

80 1.494 0.795 0.670 1.425 0.473 0.269 1.641 0.565 0.247
-0.006 0.295 0.630 -0.075 -0.027 0.229 0.141 0.065 0.207
0.000 0.246 19.319 0.058 0.013 0.259 0.162 0.021 0.262

100 1.495 0.682 0.812 1.407 0.474 0.274 1.568 0.569 0.184
-0.005 0.182 0.772 -0.093 -0.026 0.234 0.068 0.069 0.144
0.000 0.087 31.224 0.046 0.010 0.250 0.095 0.017 0.253

Table 4.2: Parameter estimates for TIW distribution in some scenarios

A simple simulation study with 1000 Monte Carlo experiments will be discussed to evaluate the perfor-
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mance of the MM, ML, and LC estimates. With different sample sizes such as 30, 50, 80 and 100. In all

scenarios, we can observe good results associated with small values; small bias and mean squared error (MSE)

values are associated with 80 and 100 sample sizes. We can observe that while the sample size increases, the

bias and MSE decrease. However, for the last scenario, MM allows us to see that for λ values close to zero in

the third parameter, the MSE is higher. This indicates that it is not a good estimate.

4.6 Application to real datasets

In this section, we provide an analysis of real datasets to evaluate the T 2 statistic. In the present study, we will

be using the following three datasets:

• DATASET 1: The data are taken from Aarset (1987) and also reported in Khan and King (2014), which

refers to the failure times of fifty devices put on life tests at time zero. This dataset is known to have a

bathtub-shaped hazard rate. The observations (in weeks) are

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0
7.0 11.0 12.0 18.0 18.0 18.0 18.0 18.0 21.0 32.0

36.0 40.0 45.0 45.0 47.0 50.0 55.0 60.0 63.0 63.0
67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0 83.0
84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0

Table 4.3: DATASET 1. Life time of 50 devices

• DATASET 2: The data in Lee and Wang (2003) represents a set of reported remission times (in months)

of 128 bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97
9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64
5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31
0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34

14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23
5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26
2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 13.31 4.51 6.54 8.53 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 4.4: DATASET 2. Remission times of 128 bladder cancer patients

• DATASET 3: The data are the time between failures (thousands of hours) of 23 secondary reactor
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pumps installed in the RSG-GAS reactor in Suprawhardana and Prayoto (1999) and also Bebbington

et al. (2007).

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347 0.150
0.358 0.101 1.359 3.465 1.060 0.614 1.921 4.082 0.199
0.605 0.273 0.070 0.062 5.320

Table 4.5: DATASET 3. Time between failures of secondary reactor pumps

For the above datasets, in Table 4.6 we show some descriptive statistics for each one. Coefficient of Vari-

ation (CV) values indicate greater levels of dispersion in data around the mean. Related to asymmetry and

kurtosis in dataset 1, they indicate left tail and smooth distribution. In dataset 2, for the mean, median, and

mode values, we have skewed left distribution. Standard Deviation (SD) in dataset 3 observations indicate a

low dispersed relation to the mean.

Values in Table 4.7 illustrates the T 2 statistic and p-value in each dataset. We can observe that in all

estimation methods we verify the quality of our estimation methods and Goodness-of-Fit measures.

Dataset Min Max Mean Median Moda SD Asymmetry Kurtosis CV
1 0.10 86.00 45.69 48.50 1.00 32.84 -0.13 -1.64 71.87
2 0.08 79.05 9.37 6.39 5.32 10.51 3.29 18.48 112.20
3 0.06 6.56 1.55 0.61 0.75 1.97 1.29 0.18 127.10

Table 4.6: Descriptive statistics for datasets
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Figure 4.3: Diagram of the LC (κ̃3, κ̃2) and Confidence Ellipses for the dataset 1 for TIW distribution
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Figure 4.4: Diagram of the LC (κ̃3, κ̃2) and Confidence Ellipses for the dataset 2 for TIW distribution
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Figure 4.5: Diagram of the LC (κ̃3, κ̃2) and Confidence Ellipses for the dataset 3 for TIW distribution

Method Dataset 1 Dataset 2 Dataset 3
Estimative T 2 p-value Estimative T 2 p-value Estimative T 2 p-value
(β̂, η̂, λ̂) (β̂, η̂, λ̂) (β̂, η̂, λ̂)

0.750 0.749 1.487
MM 2.194 1.521 0.693 2.155 8.196 0.049 1.647 0.348 0.956

-0.422 -0.477 -0.101
0.512 0.835 0.847

ML 0.518 10.220 0.029 0.639 4.092 0.263 3.262 1.675 0.683
-0.700 -0.855 -0.442
2.468 2.447 1.429

LC 0.001 0.276 0.966 0.034 0.181 0.980 4.698 0.298 0.964
-0.796 -0.533 -0.578

Table 4.7: Estimatives, T 2 statistic and p-value for the datasets.

As an additional analysis, we show a visual illustration form of fits with confidence ellipses for each dataset.

We use the T 2 statistic value to measure the distance between the data and the TIW model. The better fit be-

tween the data and the model means a smaller T 2 statistic and a higher p-value do not reject the null hypothesis.

The ellipses was done by the ellipse-package available in the software R. The ellipse center will be the LC

ˆ̃κ2, ˆ̃κ3 and the axes are directed according to the eigenvectors of K̂; the Degree Coverage (DC) is quantified

with a significance level of 95%. See Figures 4.3, 4.4 and 4.5.

For Dataset 1, the MM and LC methods have a p-value greater than the ML method, and also T 2 is remark-
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ably higher than the last method. Figure 4.3 shows the majority of points into the diagram and into the ellipse.

That means a good fit.

T 2 in Dataset 2 has a smaller value in the LC method than others, and seeing the p-value higher means the

best fit, such that Dataset 3 have the same analysis.

Figure 4.4 shows most of the points on the diagram and on the ellipse. That means a good fit. However, in

Figure 4.5, despite the points perpendicular to the diagram, they are on the diagram and most of them are on

the ellipse.

4.7 Concluding remarks

We provide analitical and visual analysis to Goodness-of-Fit measures to the datasets. We define the Mellin

Transform for Transmuted Inverse Weibull distribution and give the close form of the estimators. We estimate

the parameters model using Maximum Likelihood, Moments and Log-Cumulants and show the better fit in

the specific dataset by T 2 statistic. A simple Monte Carlo simulation study accomplished the performance of

estimates.

4.8 Appendix Chapter

Algorithm to calculate T 2 statistic:
Step 1 Estimate the β, η, λ parameters by ML, MM or LC methods,
Step 2 Take the estimatives from above step and find ˆ̃κ2 and ˆ̃κ3,
Step 3 Find sample LC: κ̃2 and κ̃3 through Log Moments,
Step 4 Calculate T 2 statistic with ML, MM or LC.

K3x3 = J>3x3M3x3J3x3

=


1 0 0

−2µ1 1 0

−3(µ2 − 2µ2
1) −3µ1 1


>

κ̃2 κ̃3 + 2κ̃1κ̃2 M1,3

κ̃3 + 2κ̃1κ̃2 M2,2 M2,3

M3,1 M3,2 M3,3




1 0 0

−2µ1 1 0

−3(µ2 − 2µ2
1) −3µ1 1



=


κ̃2 κ̃3 κ̃4

κ̃3 κ̃4 + 2κ̃2
2 κ̃5 + 6κ̃2κ̃3

κ̃4 κ̃5 + 6κ̃2κ̃3 κ̃6 + 9κ̃2κ̃4 + 9κ̃2
3 + 6κ̃3

2

 ,
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where

M1,3 = κ̃4 + 3κ̃1κ̃3 + 3κ̃2
2 + 3κ̃2

1κ̃2 = M3,1;

M2,2 = κ̃4 + 4κ̃1κ̃3 + 2κ̃2
2 + 4κ̃2

1κ̃2;

M2,3 = κ̃5 + 5κ̃1κ̃4 + 9κ̃2κ̃3 + 9κ̃2
1κ̃3 + 12κ̃1κ̃

2
2 + 6κ̃3

1κ̃2 = M3,2;

M3,3 = κ̃6 + 6κ̃1κ̃5 + 15κ̃2κ̃4 + 15κ̃2
1κ̃4 + 9κ̃2

3 + 54κ̃1κ̃2κ̃3 + 18κ̃3
1κ̃3 + 15κ̃3

2 + 36κ̃2
1κ̃

2
2 + 9κ̃4

1κ̃2.

Based on (4.15), we obtain the asymptotic covariance matrix from LC (KLC) for TIW,

KLC =

 κ̃4 + 2κ̃2
2 κ̃5 + 6κ̃2κ̃3

κ̃5 + 6κ̃2κ̃3 κ̃6 + 9κ̃2κ̃4 + 9κ̃2
3 + 6κ̃3

2

 =
1

β6

τ2,2 τ2,3

τ3,2 τ3,3

 ,

where

τ2,2 = β2

{
−
(
λ log4(2)

(
6λ3 + 12λ2 + 7λ+ 1

)
+ Ψ(3)(1)

)
+ 2

(
−
(
λ log2(2)(λ+ 1) + Ψ(1)(1)

))2
}
,

τ2,3 = β
{
−
(
λ log5(2)

(
24λ4 + 60λ3 + 50λ2 + 15λ+ 1

)
+ Ψ(4)(1)

)}
+β
{

6
(
−
(
λ log2(2)(λ+ 1) + Ψ(1)(1)

))(
−
(
λ log3(2)

(
2λ2 + 3λ+ 1

)
+ Ψ(2)(1)

))}
= τ3,2,

τ3,3 = −
(
λ log6(2)

(
120λ5 + 360λ4 + 390λ3 + 180λ2 + 31λ+ 1

)
+ Ψ(5)(1)

)
+9
(
−
(
λ log2(2)(λ+ 1) + Ψ(1)(1)

))(
−
(
λ log4(2)

(
6λ3 + 12λ2 + 7λ+ 1

)
+ Ψ(3)(1)

))
+9
(
−
(
λ log3(2)

(
2λ2 + 3λ+ 1

)
+ Ψ(2)(1)

))2
+ 6

(
−
(
λ log2(2)(λ+ 1) + Ψ(1)(1)

))3
.

If KLC is nonsingular, then

K−1LC =
β6

τ33τ22 − τ2
23

 τ33 −τ32

−τ23 τ22

 .

Finally, T 2 statistic is given by

T 2 = n

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

> K̂−1
LC

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

 . (4.15)
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Further manipulation on the above equation leads to obtain

T 2 =
nβ6

τ̂3,3τ̂2,2 − τ̂2
2,3

[
τ̂3,3

(
ˆ̃κ2 − κ̃2

)2
+ τ̂2,2

(
ˆ̃κ3 − κ̃3

)2
− 2τ̂2,3

(
ˆ̃κ2 − κ̃2

)(
ˆ̃κ3 − κ̃3

)]
≤ χ2

2,ν .

Other way to obtain the asymptotic covariance matrix from ML (KML) is by using the observed informa-

tion matrix instead M3x3 as following

KML = Z>HZ,

where H = − ∂2l(β,η,λ)
∂(β,η,λ)>∂(β,η,λ)

=


Hββ Hβη Hβλ

Hηβ Hηη Hηλ

Hλβ Hλη Hλλ

 , is the Hessian matrix from 4.4 and

Z =


∂
∂β κ̃2

∂
∂β κ̃3

∂
∂η κ̃2

∂
∂η κ̃3

∂
∂λ κ̃2

∂
∂λ κ̃3

 =


2
β3

(
λ log2(2)(λ+ 1) + Ψ(1)(1)

) 3(λ(2λ2+3λ+1) log3(2)+Ψ(2)(1))
β4

0 0

− (2λ+1) log2(2)
β2 − (6λ2+6λ+1) log3(2)

β3

 .

Thus,

KML =
HββHλλ −H2

ηλ

β8|L|

 4β2Ψ(1)(1)2 6β2Ψ(1)(1)Ψ(2)(1)

6βΨ(1)(1)Ψ(2)(1) 9Ψ(2)(1)2

 ,

|L| = Hββ(HηηHλλ −H2
ηλ) + Hβη(HβλHηλ −HβηHλλ) + Hβλ(HβηHηλ −HβλHηη).

Finally, the T 2 statistic by using KML is

T 2 = n

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

> K̂−1
ML

ˆ̃κ2

ˆ̃κ3

−
κ̃2

κ̃3

 . (4.16)

We furnish the expression expanded

T 2 =
nβ̂6

4

(
1

β̂2
− 1

β2

)2


∣∣∣L̂∣∣∣
Hβ̂β̂Hλ̂λ̂ −Hη̂λ̂

 .
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Chapter 5

A Simulation Study for Transmuted Inverse

Weibull Distribution

Abstract
A general simulation study from Transmuted Inverse Weibull distribution is shown in this article. This

distribution generalizes some other distributions in the literature. Some properties of the Transmuted Inverse

Weibull distribution are presented. We present a simulation study to verify the performance estimators with the

Moments, Maximum Likelihood and Log-Cumulants methods. Kolmogorov Smirnov and Cramér-vom Mises

as Goodness-of-Fit criterias are used. Monte Carlo methods such as bootstrap and Jackknife are uses to estimate

population characteristics. Finally, an application to real dataset is provided.

Keywords: Bootstrap, Estimation Methods, Jackknife, Goodness-of-Fit, T 2 Statistic.

5.1 Introduction

The Transmuted Inverse Weibull (TIW) distribution can be a lifetime probability distribution that is used in

differents fields. In this work, we have a simulation study with the three parameters TIW distribution.

The focus in this work is to evaluate the performance of the purpose estimators. We do Monte Carlo

simulations with finite random samples from TIW. Also, with different scenarios and sample sizes we use the

Moments, Maximum Likelihood and Log-Cumulats methods to estimate the model parameters.

In addition to verify the power of the GoF measures, we work Bootstrap and Jacknife methods for check

the quality of the tools covered in this material; these methods are a class of Monte Carlo methods that estimate

the distribution of a population by resampling.
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This Chapter is organized as follows: In Section 5.2, the cdf, pdf, quantile function, mean and median

of TIW distribution are presented. Next, in Section 5.3 the parameter estimation methods are displayed. In

Section 5.4 a simulation study with some scenarios we estimate the bias and MSE for different methods, besides

we estimate the power and Goodness-of-Fit measures for TIW distribution such as Cramér-von Mises (W),

Kolmogorov Smirnov (KS) and we compare the T 2 measure. And finally, the conclusions an Future Works.

5.2 Transmuted Inverse Weibull

A random variable X is said to follow Transmuted Inverse Weibull distribution, with β, η > 0, and |λ| ≤ 1,

the shape, scale and transmuting parameters, respectively, if the CDF and PDF are given by (Khan and King,

2014):

FX(x) = (1 + λ) e
− 1
η ( 1

x)
β

−λ
(

e
− 1
η ( 1

x)
β
)2

,

fX(x) =

(
β

η

)(
1

x

)β+1

e
− 1
η ( 1

x)
β
(

1 + λ− 2λ e
− 1
η ( 1

x)
β
)
, x > 0. (5.1)

Figure (5.1) shows the CDF and PDF for selected parameter values. Below are three PDF graphs, varying

β, η and λ, the TIW tends to be a asymmetry distribution in all cases.
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Figure 5.1: Transmuted Inverse Weibull CDF (a) and PDF (b) for different values of β, η, λ

When λ = 0, TIW distribution simplifies to Inverse Weibull. When β = 1 and λ = 0, TIW distribution
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reduces to Transmuted Inverse Exponential. If β = 2, the Transmuted Inverse Rayleigh is a special case of

TIW.

Using v a random number from zero to one. The quantile function from TIW, by solving FX(x) ≤ v is

x =

(
−η log

(
(1 + λ)−

√
(1 + λ)2 − 4λv

2λ

))−1
β

. (5.2)

The r-th moment from X ∼ TIW (x;β, η, λ) distribution is given as follows

E (Xr) = η
− r
β Γ

(
1− r

β

)(
1 + λ− λ2

r
β

)
, (5.3)

where Γ(·) is the Gamma function.

Using v = 0.5 in (5.2), we obtain the median of the TIW. In practice, this is the life at which at least 50%

of the units will be expected to fail.

5.3 Parameter Estimation

5.3.1 Method of Moments

This method is based on the theoretical and sampling moments of the X1, X2, . . . , Xn random variables. For

r > 0 integer, the r-th sample moment is the random variable

E(Xr) =
1

n

n∑
i=1

Xr
i . (5.4)

The first three moments are:

E
(
X1
)

= η
− 1
β Γ

(
1− 1

β

)(
1 + λ− λ2

1
β

)
= µ1,

E
(
X2
)

= η
− 2
β Γ

(
1− 2

β

)(
1 + λ− λ2

2
β

)
= µ2,

E
(
X3
)

= η
− 3
β Γ

(
1− 3

β

)(
1 + λ− λ2

3
β

)
= µ3.

Solving by numerical methods (5.4), we can obtain the MM estimatives. The dfsane function, BFGS method

and BB package were used in the software R.
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• Algorithm:

1. Let x = (x1, x2, . . . , xn) a random sample following the TIW distribution;

2. Write the simultaneus equations for r = 1, 2, 3,

E(Xr) =
1

n

n∑
i=1

Xr
i = µr;

3. Solve the equations by using the software R.

5.3.2 Method of Maximun Likelihood

Let X1, X2, . . . , Xn a random sample from TIW distribution with pdf in (5.1). The Maximum Likelihood

function is given by

L(β, η, λ;xi) =
n∏
i=1

β

η

(
1

xi

)β+1

e
− 1
η

(
1
xi

)β (
1 + λ− 2λ e

− 1
η

(
1
xi

)β)
, (5.5)

where xi, i = 1, 2, . . . , n are the observed values of the random sample.

To estimate the parameters, we find the set of values of β, η and λ that attains their maximum in (5.5).

The log-likelihood function of (5.5) is as follows

l(β, η, λ;xi) = n log
β

η
+ (β + 1)

n∑
i=1

log

(
1

xi

)
−

n∑
i=1

1

η

(
1

xi

)β
+

n∑
i=1

log

(
1 + λ− 2λ e

− 1
η

(
1
xi

)β)
. (5.6)

The Maximum Likelihood estimators are obtained by maximizing (5.6).

Thus, solving the below equations, the Maximum Likelihood Estimators can be obtained:

∂l

∂β
(β, η, λ;xi) =

n

β
+ 2

n∑
i=1

λ
(

1
xi

)β
log
(

1
xi

)
e
−
(

1
η

)(
1
xi

)β

η

(
λ− 2λ e

− 1
η

(
1
xi

)β
+1

) − 1

η

n∑
i=1

(
1

xi

)β
log

(
1

xi

)
+

n∑
i=1

log

(
1

xi

)
= 0,

∂l

∂η
(β, η, λ;xi) = −n

η
− 2

n∑
i=1

λ
(

1
xi

)β
e
−
(

1
η

)(
1
xi

)β

η2

(
λ− 2λ e

− 1
η

(
1
xi

)β
+1

) +
1

η2

n∑
i=1

(
1

xi

)β
= 0,

∂l

∂λ
(β, η, λ;xi) =

n∑
i=1

1− 2 e
−
(

1
η

)(
1
xi

)β
λ− 2λ e

−
(

1
η

)(
1
xi

)β
+1

= 0.
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In this work we use for maximization the optim function, BFGS method and BB package in the software R.

• Algorithm:

1. Let x = (x1, x2, . . . , xn) a random sample following the TIW distribution;

2. Write the log-likelihood from TIW to get the parameters;

3. Solve the equations by using the software R.

5.3.3 Method of Log-Cumulants

This method consists in equaling sample version LC with theoretical LC as follow

− 1

β̂

(
log(η̂) + λ̂ log(2) + Ψ(0)(1)

)
= ˆ̃µ1,

− 1

β̂2

(
λ̂ log2(2)(λ̂+ 1)−Ψ(1)(1)

)
= ˆ̃µ2 − ˆ̃µ2

1, (5.7)

− 1

β̂3

(
λ̂ log3(2)

(
2λ̂2 + 3λ̂+ 1

)
+ Ψ(2)(1)

)
= ˆ̃µ3 − 3ˆ̃µ1

ˆ̃µ2 + 2ˆ̃µ3
1,

such that

β̂ =
3

√√√√ λ̂ log3(2)
(

2λ̂2 + 3λ̂+ 1
)

+ Ψ(2)(1)

− ˆ̃µ3 + 3ˆ̃µ1
ˆ̃µ2 − 2ˆ̃µ3

1

,

η̂ = e−β̂
ˆ̃µ1−λ̂ log(2)−Ψ(0)(1),

λ̂ =

√
4
(
−β̂2

(
ˆ̃µ2 − ˆ̃µ2

1

)
−Ψ(1)(1)

)
−
√

log2(2)

2
√

log2(2)
.

This study was done by using the BB and MaxLik packages, also by using BBsolve, maxBFGS functions

avaliables in the software R.

• Algorithm:

1. Let x = (x1, x2, . . . , xn) a random sample following the TIW distribution;

2. Write the simultaneus equations in 5.7;

3. Solve the equations by using the software R.
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5.3.4 Methods with resampling

Jackknife: The method is as following.

Let X = (X1, X2, . . . , Xn) a random sample of size n. Suppose that we are interested in estimating a pa-

rameter θ, and the estimate of θ computed from the sample is denoted as θ̂. The jackknife method creates

jackknife samples X(i) that leave out one observation at a time, X(i) = (X1, X2, . . . , Xi−1, Xi+1, . . . , Xn)

for i = 1, 2, . . . , n, and so on to finally leave out the last observation to create the n−th jackknife sample,

X(n) = (X1, X2, . . . , Xn−1). Then the jackknife method computes the value of θ̂ for each of the jackknife

samples, θ̂(i), which is called the i−th jackknife replication, denotes the value of θ̂ computed from the i−th

jackknife sample X(i) (Sinharay, 2010).

Bootstrap: The bootstrap is a computational method, which consists in a resampling method, based on

calculating estimates from repeated sampling within the same sample, replacing analytical calculations with

computational effort.

The bootstrap could be as following: Let Xi = x1, x2, . . . , xn sample random with i = 1, 2, . . . , n,

1) To calculate θ̂ estatistic of interest;

2) From the original sample extract, with replacement, a sample X∗si = x∗s1 , x
∗s
2 , . . . , x

∗s
n ;

3) To calculate the same statistic of interest considering the bootstrap sample xs to obtain θ̂∗s;

4) To repeat steps 2) and 3) a number S, very large number of times, obtaining θ̂∗1, θ̂∗2, . . . , θ̂∗S ;

5) Use the distribution estimate given by θ̂∗s for s = 1, 2, . . . , S, to obtain the statistic desired.

5.4 A Simulation Study

This section starts with a simulation study from TIW distribution. A Monte Carlo simulation study is carried

out to compare the performance of the estimators. The simulation experiment was repeated 10.000 independent

times and is sufficiently large to have stable results, each one with sample sizes n = 30, 50, 80, 100 and (β, η, λ)

in the next scenarios (3, 2,−0.7), (9, 3.2, 0.5), (4, 5, 0.5). We estimated the parameters using the method of

MM, and then these estimates were used as the initial values in ML and LC. We calculate the mean, bias, and

mean squared error estimates to verify the model’s performance. Numerical results are complemented with

graphics such as standard deviation and mean squared error to complement the analysis.
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n (β, η, λ) MM ML LC
β̂ η̂ λ̂ β̂ η̂ λ̂ β̂ η̂ λ̂

30 (3, 2,−0.7) Mean 3.055 1.937 -0.735 2.997 1.995 -0.753 3.028 1.945 -0.597
Bias 0.055 -0.063 -0.035 -0.003 -0.005 -0.005 0.028 -0.055 0.103
MSE 0.008 0.026 0.026 0.027 0.028 0.028 0.029 0.028 0.017

50 3.065 2.021 -0.756 2.993 1.998 -0.736 3.051 1.932 -0.599
0.065 0.021 -0.056 -0.007 -0.002 -0.002 0.051 -0.068 0.101
0.007 0.025 0.032 0.027 0.029 0.029 0.029 0.029 0.017

80 3.069 1.983 -0.733 2.992 2.001 -0.730 3.056 1.914 -0.603
0.069 -0.017 -0.033 -0.008 0.001 0.001 0.056 -0.086 0.097
0.009 0.024 0.026 0.025 0.027 0.027 0.029 0.030 0.017

100 3.057 2.003 -0.732 2.993 2.003 -0.722 3.055 1.909 -0.605
0.057 0.003 -0.032 -0.007 0.003 0.003 0.055 -0.091 0.095
0.008 0.024 0.024 0.025 0.027 0.027 0.028 0.031 0.017

30 (9, 3.2, 0.5) 8.990 3.209 0.470 8.990 3.199 0.491 8.986 3.225 0.468
-0.010 0.009 -0.030 -0.010 -0.001 -0.001 -0.014 0.025 -0.032
0.031 0.023 0.031 0.031 0.029 0.029 0.029 0.029 0.031

50 9.011 3.191 0.523 9.005 3.187 0.487 8.965 3.208 0.506
0.011 -0.009 0.023 0.005 -0.013 -0.013 -0.035 0.008 0.006
0.026 0.030 0.028 0.026 0.029 0.029 0.030 0.028 0.025

80 9.012 3.187 0.508 8.997 3.186 0.511 8.977 3.208 0.493
0.012 -0.013 0.008 -0.003 -0.014 -0.014 -0.023 0.008 -0.007
0.031 0.028 0.027 0.030 0.027 0.027 0.030 0.028 0.023

100 8.997 3.211 0.493 8.988 3.189 0.507 8.972 3.192 0.512
-0.003 0.011 -0.007 -0.012 -0.011 -0.011 -0.028 -0.008 0.012
0.029 0.029 0.026 0.027 0.027 0.027 0.030 0.028 0.022

30 (4, 5, 0.5) 4.091 4.939 0.484 4.008 5.001 0.477 3.956 4.985 0.486
0.091 -0.061 -0.016 0.008 0.001 0.001 -0.044 -0.015 -0.014
0.036 0.041 0.038 0.027 0.030 0.030 0.029 0.032 0.017

50 4.092 4.947 0.495 4.029 4.998 0.493 3.954 4.992 0.505
0.092 -0.053 -0.005 0.029 -0.002 -0.002 -0.046 -0.008 0.005
0.036 0.027 0.030 0.025 0.030 0.030 0.025 0.028 0.019

80 4.065 4.956 0.455 4.003 4.986 0.508 3.939 4.984 0.504
0.065 -0.044 -0.045 0.003 -0.014 -0.014 -0.061 -0.016 0.004
0.029 0.035 0.027 0.019 0.027 0.027 0.025 0.031 0.018

100 4.085 4.971 0.490 3.991 4.986 0.503 3.942 4.990 0.499
0.085 -0.029 -0.010 -0.009 -0.014 -0.014 -0.058 -0.010 -0.001
0.035 0.026 0.028 0.019 0.030 0.030 0.022 0.032 0.020

Table 5.1: Parameter estimates for TIW distribution in some scenarios with 10.000 replicates

Monte Carlo simulations allow us to compare statistical methods. Then, we are interested in verifying the

performance of the estimators. For this case, we calculate in Table 5.1 the mean, bias, and mean squared error

(MSE) estimates between the theoretical and empirical distribution function as the performance assessment

criteria of each parameter in Moments, Maximum likelihood, and Log-Cumulants methods. 10.000 samples

from the TIW distribution were generated for different parameter values (30, 50, 80, 100) sample sizes. The

samples were obtained by using (5.2).

The relative bias of an estimator is defined as the mean of the estimates minus the true value of the parame-

ter, this measurement being divided by the true value of the parameter, expected that this measurement is close

to zero. Therefore, we can see that the λ parameter, the LC showed better results in terms of bias and MSE

compared to the others.
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The mean square error, another measure used in this work, is the mean of the difference between the

estimator value and the squared parameter. The ideal would be to have a MSE equal to zero, however, in

practice, this is unfeasible. Overall, we look for estimators that have a relative bias and a MSE close to zero.

Table 5.1 displays the estimatives for MM, ML and LC methods in different scenarios. In the first scenario

for β̂ and λ̂ the MSE in MM decreasing but not in all sample sizes. However, in the last escenario, β̂, η̂ and λ̂ for

LC we observe that MSE decreases as the sample size increases. We can notice, in general, that all estimators

achieved good results in terms of bias and MSE, close to the true parameters.

For the first scenario, (3, 2,−0.7). Specifically, for β, the MM estimator together with the ML estimator

obtained better results in terms of bias in absolute value. For the λ parameter, in the first scenario, the LC

estimator presented better results, obtaining a lower MSE in all scenarios compared to MM and ML as the

sample size increases. For the η parameter, the ML estimator excelled in terms of bias in all sample sizes.

The absolute bias decreases with increasing n for β̂ and λ̂ in MM and LC, respectively for the last scenario.

But in the majority cases the bias decreases. For the three scenarios we can observe in the general form that the

absolute bias and MSE decrease when the sample size is increasing, showing good performance in all methods.

Complementary to numerical results are shown in Figures 5.2 and 5.3, where the graphics corresponds to sd

and MSE parameter values fixing λ in each scenario. The MSE for LC Figure 5.3(b) and (c) in second and third

scenarios decreases when the sample size increases, however, in the last scenario in a general form the MSE

decreases but not as we wish. It can be seen that we recommend using the LC, as it presented better results than

the MM and ML in most scenarios. For example, in Figure 5.2 (a) the LC presented a sd smaller in relation to

the MM and ML, which means that the estimated values are closer to the mean than the other estimators.

In Figure 5.3 (a), we can see that the MM estimator is the one with the lowest MSE as the sample size

increases. In Figure 5.3 (c), we can see that at the sample size (n = 80), the LC and ML estimator had almost

the same performance (MSE). In general, we can see that the results for LC present good performance, showing

our proposals have furnished good results.

• Algorithm

1. Set (β, η, λ) ∈ {(3, 2,−0.7); (9, 3.2, 0.5); (4, 5, 0.5)};

2. Generate a random sample x = (x1, x2, . . . , xn) from the TIW distribution in (β, η, λ) with sample

sizes 30, 50 80 and 100;

3. Estimate (β, η, λ) by MM, ML and LC;

4. Calculate: For ε > 0, if
∣∣∣β − β̂∣∣∣ < ε and |η − η̂| < ε and

∣∣∣λ− λ̂∣∣∣ < ε, take (β̂, η̂, λ̂), otherwise do
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it again;

5. Generate 10,000 Monte Carlo replicates, each one with sample sizes 30, 50 80 and 100;

6. Take the Mean, Bias and MSE of those estimates.
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Sample Size for (3,2,−0.7)
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Sample Size for (4,5,0.5)
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Figure 5.2: Standar deviation of the estimates of λ parameter
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Sample Size for (9,3.2,0.5)
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Sample Size for (4,5,0.5)
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Figure 5.3: Mean Squared Error of the estimates of the parameters
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Parameters Sample 1% 5% 10%

MM ML LC MM ML LC MM ML LC

(β = 3, η = 2, λ = −0.7) 30 99.41 99.45 99.59 95.24 95.54 95.31 90.66 91.49 94.61

50 99.53 99.61 99.76 95.32 95.50 95.59 91.14 91.06 92.78

80 99.64 99.72 99.88 95.37 95.82 95.59 91.28 91.53 91.00

100 99.69 99.77 99.90 95.57 95.65 93.12 91.57 90.81 93.12

(β = 9, η = 3.2, λ = 0.5) 99.84 99.81 99.78 96.35 94.20 96.02 88.40 91.40 89.04

99.95 99.87 99.92 96.81 94.31 96.88 87.88 91.50 89.86

99.91 99.95 99.94 96.51 94.35 96.13 87.90 91.55 90.30

99.94 99.96 99.94 96.90 94.70 95.90 88.10 91.80 90.25

(β = 4, η = 5, λ = 0.5) 99.72 99.76 99.82 95.84 95.25 96.05 91.84 94.55 94.77

99.84 99.87 99.82 96.01 95.28 96.67 92.33 94.56 92.34

99.92 99.89 99.92 95.71 95.26 96.53 94.61 94.29 92.10

99.92 99.89 99.92 95.71 95.20 96.20 94.70 93.00 90.20

Table 5.2: Estimated power for TIW distribution

For each scenario, we calculate MM , ML and LC based on the parameters, and then we calculate the

count of the required p-value according to Table 5.2 to obtain a power of 90 at 0.10 level, 95 at 0.05 level and

99 at 0.01 level.

Power here is the rejection rate of H0 at the 1%, 5%, 10% significance level after independent simulations.

The experiment was conducted with 10.000 replicates with different samples sizes in each scenario parameters.

The first scenario in Table 5.2, shows that for sample size 30 in all significance levels the MM method was

better than ML and LC. MM is better in this scenario for the 5% and 10% level. For the 1%, the best is the LC,

as it is closer to 99%.

For 50 and 100 sample size with 1% and 5% level in the MM were close to the power of each level, and for

10% level was the ML. Already for sample size 80, LC at 10% level showed better results.

For the first scenario, it is noteworthy that at the 1% level, the LC was the one with the greatest power, as

it is closer to 99% in all sample sizes. For the 5% and 10% levels, considering the sample size 30 , the MM

showed greater power. As for the sample size n = 100, in the first scenario, considering the 10% level, the ML

showed better power, as it is closer to 90%.

For the second scenario (β = 9, η = 3.2, λ = 0.5), it can be seen that for the 5% and 10% levels, the

LC presented better results, followed by the ML and finally the MM, as evidenced by if so as the sample size

increases. Now, we can see the following in Figure 5.4, 5.5 and 5.6. For 10% level in all sample sizes LC
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obtained better results in the power. Also, when the sample size increases, in this case the statistical power

stabilizer in a little bit greater than 90. For 5% level and sample size 100, ML and LC present closer values to

the power. Finally, for 1% level, MM and LC with sample size 80 and 100 are the ones with the best results.

For the last (β = 4, η = 5, λ = 0.5) scenario, in 10% level, for all samples sizes in LC obtain best results.

And for 5% level, ML shows good results. For 1% level, with 80 and 100 sample sizes, MM and LC displays

same results 99.92 for 30 and 50 sample sizes, MM and LC provide power which are close to 99.

This study was developed with the optim and dfsane functions in the BB package (Varadhan and Gilbert,

2010), avaliable in the Software R.

• Algorithm Power of the test

1. Set (β, η, λ) ∈ {(3, 2,−0.7); (9, 3.2, 0.5); (4, 5, 0.5)};

2. Generate a random sample x = (x1, x2, . . . , xn) from the TIW distribution in (β, η, λ) with sample

sizes 30, 50 80 and 100;

3. Estimate the parameters with MM, ML, LC methods;

4. Calculate: For ε > 0, if
∣∣∣β − β̂∣∣∣ < ε and |η − η̂| < ε and

∣∣∣λ− λ̂∣∣∣ < ε, take (β̂, η̂, λ̂), otherwise do

it again;

5. If p−value > {0.90; 0.95; 0.99},
∣∣∣β − β̂∣∣∣ < ε and |η − η̂| < ε and

∣∣∣λ− λ̂∣∣∣ < ε, take (β̂, η̂, λ̂);

6. Take the Mean of those estimates.
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Figure 5.6
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Parameters Sample 1% 5% 10%

T 2 W KS T 2 W KS T 2 W KS

(β = 3, η = 2, λ = −0.7) 30 99.62 99.02 98.60 96.05 95.57 96.51 91.03 92.35 94.89

50 99.75 98.99 98.95 96.13 95.57 96.76 91.51 92.14 94.58

80 99.87 98.98 99.22 95.87 95.51 96.88 91.50 92.20 94.57

100 99.90 98.99 99.33 95.40 95.50 95.55 91.50 92.14 94.50

(β = 9, η = 3.2, λ = 0.5) 99.70 99.03 98.60 95.48 95.57 96.51 92.14 92.35 94.89

99.71 98.99 98.95 96.10 95.57 96.76 90.83 92.14 94.57

99.85 98.99 99.23 96.76 95.51 96.88 90.80 92.21 94.58

99.89 99.00 99.34 95.79 95.51 96.55 90.50 92.15 94.55

(β = 4, η = 5, λ = 0.5) 99.79 99.03 98.61 95.19 95.57 96.51 93.17 92.35 94.89

99.86 99.00 98.96 95.20 95.57 96.76 92.70 92.14 94.40

99.93 98.99 99.23 96.88 95.51 96.88 92.30 92.21 94.50

99.92 99.00 99.34 95.15 95.51 96.55 92.28 92.14 94.51

Table 5.3: Estimated power Goodness-of-Fit measures for TIW distribution

In this study, we would hope that the simulated power for each of these three scenarios would be close to

90, 95 and 99. Table 5.3 displays the estimated power for GoF measures of the T 2,W,KS statistics. Here, we

generate samples from TIW and we do a Monte Carlo simulation with ten thousand replicas each one. With

α = 1%, 5%, 10% levels and sample sizes n = 30, 50, 80, 100, we will analyse the results.

We use the Kolmogorov-Smirnov and Cramér-von Mises statistics criteria to assess the appropriateness

of the model. The least value of these measures may indicate better fit. The performance of T 2 measure, is

compared with the W and KS GoF measures.

From Table 5.3, the first scenario, with 10% level and all samples sizes, the T 2 shows best perform than

others. For the 1% and 5% levels,W test presents values closer to 99 and 95, respectively. It was more powerful

in all sample sizes.

In (β = 9, η = 3.2, λ = 0.5) scenario, with 1% and 5% levels in all samples sizes W test outperform the

others. For this same scenario, the maximum value of the estimating power was verified, with n = 100, for the

T 2 test, at the level of 10%. In general, it is noted that T 2 was more powerful at the 10% level.

In the last scenario, for the 1% and 10% levels, W test displays better results. For sample sizes 50 and 100

and for 5% level, the T 2 tool, in general way shows good results. It can also be noted that, for a sample size,

n = 50, W excelled in terms of power in the scenarios for 1% and 10%.

This study was carried out by using the BB package (Varadhan and Gilbert, 2010), also by using optim and
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dfsane functions avaliables in the software R Core Team.

• Algorithm

1. Let x = (x1, x2, . . . , xn) a random sample following the TIW distribution;

2. Write the CDF of TIW to use the statistics of item 4. below;

3. Estimate the parameters with LC method to calculate T 2 statistic;

4. Use the Kolmogorov Smirnov and Cramér-Vom Mises criterion ;

5. Calculate: For ε > 0, if
∣∣∣β − β̂∣∣∣ < ε and |η − η̂| < ε and

∣∣∣λ− λ̂∣∣∣ < ε, take (β̂, η̂, λ̂), otherwise do

it again.
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5.5 Analysis in real dataset

In this section we provide an analysis from real datasets in order to evaluate the performance of the estimators.

In the present study we will be using the next three datasets:

• DATASET 1: The data are taken from Aarset (1987) and also reported in Khan and King (2014), refers to

the failure times of fifty devices put on life test at time zero. This dataset is known to have a bathtubshaped

hazard rate. The observations (in weeks) are

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0
7.0 11.0 12.0 18.0 18.0 18.0 18.0 18.0 21.0 32.0

36.0 40.0 45.0 45.0 47.0 50.0 55.0 60.0 63.0 63.0
67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0 83.0
84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0

Table 5.4: DATASET 1. Life time of 50 devices

• DATASET 2: The data in Lee and Wang (2003), represents a set of remission times (in months) of 128

bladder cancer patients reported.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97
9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64
5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31
0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34

14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23
5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26
2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 13.31 4.51 6.54 8.53 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 5.5: DATASET 2. Remission times of 128 bladder cancer patients

• DATASET 3: The data are the time between failures (thousands of hours) of 23 secondary reactor pumps

installed in RSG-GAS reactor in Suprawhardana and Prayoto (1999) and also Bebbington et al. (2007).

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347 0.150
0.358 0.101 1.359 3.465 1.060 0.614 1.921 4.082 0.199
0.605 0.273 0.070 0.062 5.320

Table 5.6: DATASET 3. Time between failures of secondary reactor pumps
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For the above datasets, in Table 5.7 we show some descriptive statistics for each one. Coefficient of Vari-

ation (CV) values indicate greater levels of dispersion in data around the mean. Related to asymmetry and

kurtosis in dataset 1, they indicate left tail and smooth distribution. In dataset 2, for the mean, median and

moda values, we have skewed left distribution. Standard Deviation (SD) in dataset 3, observations indicate low

dispersed relation to the mean.

Dataset Min Max Mean Median Moda SD Asymmetry Kurtosis CV
1 0.10 86.00 45.69 48.50 1.00 32.84 -0.13 -1.64 71.87
2 0.08 79.05 9.37 6.39 5.32 10.51 3.29 18.48 112.20
3 0.06 6.56 1.55 0.61 0.75 1.97 1.29 0.18 127.10

Table 5.7: Descriptive statistics for datasets

74



n Parameters Estimatives Mean Bias Var Sd

Bootstrap

30 β 2.4686 2.566 0.830 0.378 0.615
η 0.0015 0.013 −0.009 0.005 0.068
λ −0.7964 −1.021 −0.421 0.127 0.356

50 2.4686 2.776 -0.280 0.090 0.300
0.0015 0.001 0.00 0.000 0.001
−0.7964 -0.963 0.297 0.039 0.198

80 2.4686 2.789 -0.139 0.068 0.261
0.0015 0.001 0.000 0.000 0.001
−0.7964 -0.948 -0.021 0.024 0.154

100 2.4686 2.774 -0.460 0.050 0.223
0.0015 0.001 0.001 0.000 0.001
−0.7964 -0.935 0.343 0.016 0.127

Jackknife

30 β 2.4686 2.573 0.104 0.392 0.6258
η 0.0015 0.0147 0.0132 0.0052 0.0726
λ −0.7964 −1.014 −0.218 0.1232 0.3511

50 2.4686 2.777 0.309 0.089 0.299
0.0015 0.0011 -0.0003 0.000 0.0013
−0.7964 -0.9602 -0.163 0.0392 0.198

80 2.4686 2.788 -0.405 0.067 0.259
0.0015 0.0009 0.0007 0.000 0.0008
−0.7964 -0.951 0.011 0.0236 0.1538

100 2.4686 2.772 0.258 0.0496 0.2228
0.0015 0.0009 -0.0005 0.0000 0.00060
−0.7964 -0.932 -0.135 0.0161 0.127

Table 5.8: Dataset 1: Bootstrap and Jackknife

75



n Parameters Estimatives Mean Bias Var Sd

Bootstrap

30 β 2.44785119 2.403 -0.211 0.581 0.763
η 0.03419 0.089 0.068 0.008 0.088
λ -0.53342 -0.899 0.025 0.165 0.406

50 2.44785119 2.474 -0.245 0.333 0.577
0.03419 0.058 0.026 0.002 0.045

-0.53342 -0.817 -0.265 0.110 0.332

80 2.44785119 2.495 0.468 0.207 0.455
0.03419 0.050 -0.043 0.001 0.032

-0.53342 -0.796 -0.211 0.088 0.297

100 2.44785119 2.527 -0.104 0.114 0.338
0.03419 0.043 0.013 0.001 0.023

-0.53342 -0.789 -0.036 0.071 0.267

Jackknife

30 β 2.44785119 2.3962 -0.051 0.5364 0.7324
η 0.03419 0.0951 0.0610 0.0143 0.1197
λ -0.53342 -0.878 -0.344 0.1228 0.3504

50 2.44785119 2.5056 -0.0578 0.3608 0.600
0.03419 0.056 0.0224 0.0022 0.0469

-0.53342 -0.7912 -0.2578 0.0578 0.2405

80 2.44785119 2.512559 -0.0647 0.2514 0.5014
0.03419 0.0494 0.0152 0.0010 0.0326

-0.53342 -0.7996 -0.2662 0.0622 0.2494

100 2.44785119 2.59383 0.145 0.1902 0.4362
0.03419 0.0422 0.0080 0.00056 0.02373

-0.53342 -0.8795 -0.3461 0.0612 0.2601

Table 5.9: Dataset 2: Bootstrap Jackknife
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n Parameters Estimatives Mean Bias Var Sd

Bootstrap

30 β 1.4206 1.376 -0.483 0.115 0.339
η 4.595 4.040 1.591 2.259 1.503
λ -0.580 -0.339 0.249 0.324 0.569

50 1.4206 1.381 0.133 0.085 0.291
4.595 4.203 -1.862 1.792 1.339

-0.580 -0.392 0.197 0.262 0.512

80 1.4206 1.392 -0.264 0.051 0.225
4.595 4.397 0.619 1.170 1.081

-0.580 -0.453 0.127 0.182 0.427

100 1.4206 1.408 -0.169 0.022 0.150
4.595 4.539 0.050 0.536 0.732

-0.580 -0.514 0.057 0.097 0.311

Jackknife

30 β 1.4206 1.381 -0.039 0.1179 0.3434
η 4.595 4.0078 -0.5877 2.2240 1.491
λ -0.580 -0.336 0.2441 0.3255 0.5705

50 1.4206 1.3810 -0.0396 0.0822 0.2867
4.595 4.2336 -0.361 1.756 1.325

-0.580 -0.3956 0.1846 0.2578 0.5077

80 1.4206 1.3909 -0.0297 0.0532 0.2307
4.595 4.385 -0.2096 1.2030 1.0968

-0.580 -0.4477 0.1325 0.1896 0.4354

100 1.4206 1.4119 -0.008 0.01995 0.1412
4.595 4.5546 -0.040 0.4997 0.7069

-0.580 -0.5194 0.0608 0.08827 0.2971

Table 5.10: Dataset 3: Bootstrap Jackknife

Tables 5.8, 5.9 and 5.10 show the results of Jackknife and bootstrap estimates. We can see that estimates of

both methods are similar to each other and the original population whose objective is to estimate the variability

of an estimator resampled from the observed sample itself. The corresponding estimatives for β, η, λ are given.

The mean, bias, variance and standar deviation are presented for each dataset.

In dataset 2, the jackknife estimates for β in sample zise 100 the corresponding estimated standard deviation

is the smaller value 0.02373.

We have the smallest values for the third dataset bias and standar deviation in Bootstrap for β and λ.

Given the results presented in table 5.10 the Jackknife method proved to be more efficient than the bootstrap
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method because it showed the smallest bias for the β, η and λ parameters for sample sizes n = 30, 50, 80 For

n = 100 the Bootstrap method for the λ parameter resulted in a smaller bias of 0.057 versus 0.0608 for the

Jackknife. Table 5.10 shows good results that are closer in the two methods. For both methods, the bias in the

shape parameter η decreases as the sample size increases.

The bias for λ transmuting parameter in all datasets, decreases as the sample size increases in almost all

the cases The TIW distribution approximately provides an adequate fit for the data.

5.6 Concluding

In this chapter, a simulation study was done to verify the performance of the parameters. With different sce-

narios, from Monte Carlo simulations, the behavior of the estimates from TIW distribution were evaluated by

Moments, Maximum Likelihood and Log-Cumulants methods. The results obtained showed that the parameter

estimates present good results in terms of bias and MSE. We use sd and MSE to illustrate the performance of

the parameters. Also, Goodness of Fit measures are provided for TIW distribution. Cramér-von Mises and

Kolmogorov Smirnov are compare with T 2 statistic.
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Chapter 6

Concluding and Future Works

As a mentioned, the first article (Chapter 3) is independent of the second article (Chapter 4) and third (Chapter

5), but we trying to give new results in which one. The contributions are linked to the objectives, therefore we

mention as follow:

• To give new results in stochastic comparisons.

• To use the majorization theory and order statistics to do new theorems and lemmas.

• To use the Exponentiated Generalized class to compare parallel systems by the largest statistics.

• To propose a new measures of Goodness-of-Fit for the Transmuted Inverse Weibull distribution.

• To do a computational study with the Transmuted Inverse Weibull distribution.

• To compare the Moments, Maximum Likelihood and Log-Cumulantes methods.

• To applied datasets in the survival analysis context.

Recapitulating, some different new results are given to accomplish the development of the thesis:

In Chapter 3 we have comparisons stochastics by using the Exponentiated Generalized class with so many

examples and counterexamples. We use the majorization theory and stochastic order to do new theorems and

lemmas.

In Chapter 4, the focus is on the Mellin Transform and goodness of fit with the Tansmuted Inverse Weibull.

The T 2 statistic is used to choose the best fit to the data.

The next Chapter is following the same line of the second article (Chapter 4), we are doing an excellent and

complete applied computational study of simulation by using Monte Carlo and bootstrap methods, we use the
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Maximun Likelihood, Moments and Log-Cumulants methods to verify the best performance. Also measure

the power of the test and to choose the best method of estimation in survival analysis field.
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